High Energy Astrophysics Dr. Adam Ingram

Lecture 5

Black Holes

Black Holes for Babies

B is for Black Hole

A black hole is a star so dense that

 not even light can escape its gravity.The boundary where a black hole occurs is called the event horizon Many physicists believe that a very big black hole exists at the center of our galaxy.

Black Holes for Babies

- All mass, M , in a singularity
- Event Horizon: $v_{\mathrm{esc}}=c$!
- Newtonian approx: $v_{\text {esc }}^{2}=2 G M / r \Longrightarrow r_{h}=2 G M / c^{2}$
- Size scale: gravitational radius: $r_{g}=G M / c^{2}$

B is for Black Hole

A black hole is a star so dense that not even light can escape its gravity.

Black Holes for Babies

- All mass, M , in a singularity
- Event Horizon: $v_{\mathrm{esc}}=c$!
- Newtonian approx: $v_{\text {esc }}^{2}=2 G M / r \Longrightarrow r_{h}=2 G M / c^{2}$
- Size scale: gravitational radius: $r_{g}=G M / c^{2}$

Symbol rg_{g} was gyroradius; is now gravitational radius!

B is for Black Hole

A black hole is a star so dense that not even light can escape its gravity.

Black Holes in GR

- In GR, gravity = curvature. That is, mass density induces curvature in spacetime, which affects trajectories of test masses.

Black Holes in GR

- In GR, gravity = curvature. That is, mass density induces curvature in spacetime, which affects trajectories of test masses.
- What does spacetime curvature mean? Well, in flat 3D space we have that the distance between two points is given by Pythagorus' theorem:

$$
(d \ell)^{2}=(d x)^{2}+(d y)^{2}+(d z)^{2}=(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- In curved 3D space, it is not given by Pythagorus.

Black Holes in GR

- In GR, gravity = curvature. That is, mass density induces curvature in spacetime, which affects trajectories of test masses.
- What does spacetime curvature mean? Well, in flat 3D space we have that the distance between two points is given by Pythagorus' theorem:

$$
(d \ell)^{2}=(d x)^{2}+(d y)^{2}+(d z)^{2}=(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- In curved 3D space, it is not given by Pythagorus.
- In SR, include time into 4D spacetime - introduce spacetime interval. For flat spacetime, this is:
$(d s)^{2}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}$
- Position of minus sign is just a choice.

Black Holes in GR

- What is the spacetime interval? Simply related to the proper time interval:

$$
(d s)^{2}=-(c d \tau)^{2}
$$

Black Holes in GR

- What is the spacetime interval? Simply related to the proper time interval:

$$
(d s)^{2}=-(c d \tau)^{2}
$$

- Demonstration for radial motion:

$$
-(c d \tau)^{2}=-(c d t)^{2}+(d r)^{2}
$$

Black Holes in GR

- What is the spacetime interval? Simply related to the proper time interval:

$$
(d s)^{2}=-(c d \tau)^{2}
$$

- Demonstration for radial motion:

$$
\begin{aligned}
-(c d \tau)^{2} & =-(c d t)^{2}+(d r)^{2} \\
\times(c d t)^{-2} \Longrightarrow \quad\left(\frac{d \tau}{d t}\right)^{2} & =1-\left(\frac{v}{c}\right)^{2}
\end{aligned}
$$

Black Holes in GR

- What is the spacetime interval? Simply related to the proper time interval:

$$
(d s)^{2}=-(c d \tau)^{2}
$$

- Demonstration for radial motion:

$$
\begin{aligned}
-(c d \tau)^{2} & =-(c d t)^{2}+(d r)^{2} \\
\left(\frac{d \tau}{d t}\right)^{2} & =1-\left(\frac{v}{c}\right)^{2} \\
(d t)^{2} & =\frac{(d \tau)^{2}}{1-(v / c)^{2}}=\gamma^{2}(d \tau)^{2}
\end{aligned}
$$

Black Holes in GR

- What is the spacetime interval? Simply related to the proper time interval:

$$
(d s)^{2}=-(c d \tau)^{2}
$$

- Demonstration for radial motion:

$$
\begin{aligned}
-(c d \tau)^{2} & =-(c d t)^{2}+(d r)^{2} \\
\left(\frac{d \tau}{d t}\right)^{2} & =1-\left(\frac{v}{c}\right)^{2} \\
(d t)^{2} & =\frac{(d \tau)^{2}}{1-(v / c)^{2}}=\gamma^{2}(d \tau)^{2}
\end{aligned}
$$

- Can either have minus sign in front of coordinate time and proper time or in front of spatial coordinates.

Black Holes in GR

$$
(d s)^{2}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Allowed worldlines are timelike - I.e. involve travelling slower than c.
- Timelike $=$ separated by more time than space: $(d s)^{2}<0$

Black Holes in GR

$$
(d s)^{2}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Allowed worldlines are timelike - I.e. involve travelling slower than c.
- Timelike = separated by more time than space: $(d s)^{2}<0$
- A spacelike wolrdline connects two points that are not causally connected.
- Spacelike $=$ separated by more space than time: $(d s)^{2}>0$

Black Holes in GR

$$
(d s)^{2}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Allowed worldlines are timelike - I.e. involve travelling slower than c.
- Timelike = separated by more time than space: $(d s)^{2}<0$
- A spacelike wolrdline connects two points that are not causally connected.
- Spacelike $=$ separated by more space than time: $(d s)^{2}>0$
- Light travels at c on null worldlines: $(d s)^{2}=0$

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$
- Tensors:

$$
\begin{array}{ccc}
x^{\mu}=\text { contravariant tensor } & x_{\mu}=\text { covariant tensor } \\
A^{\mu}=\text { vector } & A^{\mu \nu}=2 \mathrm{D} \text { matrix } & A^{\mu \nu \sigma}=3 \mathrm{D} \text { matrix }
\end{array}
$$

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$
- Tensors:

$$
\begin{array}{ccc}
x^{\mu}=\text { contravariant tensor } & x_{\mu}=\text { covariant tensor } \\
A^{\mu}=\text { vector } & A^{\mu \nu}=2 \mathrm{D} \text { matrix } & A^{\mu \nu \sigma}=3 \mathrm{D} \text { matrix }
\end{array}
$$

- Convention: greek letters run 0-3, Roman letters run 1-3

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$
- Tensors:

$$
\begin{array}{ccc}
x^{\mu}=\text { contravariant tensor } & x_{\mu}=\text { covariant tensor } \\
A^{\mu}=\text { vector } & A^{\mu \nu}=2 \mathrm{D} \text { matrix } & A^{\mu \nu \sigma}=3 \mathrm{D} \text { matrix }
\end{array}
$$

- Convention: greek letters run 0-3, Roman letters run 1-3
- Dot product is now:

$$
d x^{\mu} d x_{\mu} \equiv d x^{0} d x_{0}+d x^{1} d x_{1}+d x^{2} d x_{2}+d x^{3} d x_{3}
$$

- Einstein sum convention: repeated index implies a sum, top and bottom must be balanced.

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$
- Tensors:

$$
\begin{array}{ccc}
x^{\mu}=\text { contravariant tensor } & x_{\mu}=\text { covariant tensor } \\
A^{\mu}=\text { vector } & A^{\mu \nu}=2 \mathrm{D} \text { matrix } & A^{\mu \nu \sigma}=3 \mathrm{D} \text { matrix }
\end{array}
$$

- Convention: greek letters run 0-3, Roman letters run 1-3
- Dot product is now:

$$
d x^{\mu} d x_{\mu} \equiv d x^{0} d x_{0}+d x^{1} d x_{1}+d x^{2} d x_{2}+d x^{3} d x_{3}
$$

- Einstein sum convention: repeated index implies a sum, top and bottom must be balanced.
- How to get from contravariant tensor to covariant tensor? The metric:

$$
A_{\mu}=g_{\mu \nu} A^{\nu}=g_{\mu 0} A^{0}+g_{\mu 1} A^{1}+g_{\mu 2} A^{2}+g_{\mu 3} A^{3}
$$

The Metric

- In GR, implement spacetime curvature by introducing a new definition of the dot product!
- Define 4-vectors: $\quad d x^{\mu}=(c d t, d x, d y, d z) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi)$
- Tensors:

$$
\begin{array}{ccc}
x^{\mu}=\text { contravariant tensor } & x_{\mu}=\text { covariant tensor } \\
A^{\mu}=\text { vector } & A^{\mu \nu}=2 \mathrm{D} \text { matrix } & A^{\mu \nu \sigma}=3 \mathrm{D} \text { matrix }
\end{array}
$$

- Convention: greek letters run 0-3, Roman letters run 1-3
- Dot product is now:

$$
d x^{\mu} d x_{\mu} \equiv d x^{0} d x_{0}+d x^{1} d x_{1}+d x^{2} d x_{2}+d x^{3} d x_{3}
$$

- Einstein sum convention: repeated index implies a sum, top and bottom must be balanced.
- How to get from contravariant tensor to covariant tensor? The metric:

$$
A_{\mu}=g_{\mu \nu} A^{\nu}=g_{\mu 0} A^{0}+g_{\mu 1} A^{1}+g_{\mu 2} A^{2}+g_{\mu 3} A^{3}
$$

- Therefore spacetime interval (=line element):

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

The Metric

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

The Metric

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- Flat spacetime: Minkowski metric $g_{\mu \nu}=\eta_{\mu \nu}$

The Metric

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- Flat spacetime: Minkowski metric $g_{\mu \nu}=\eta_{\mu \nu}$
- Cartesian:

$$
\left.\eta_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \therefore(d s)^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}\right)
$$

The Metric

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- Flat spacetime: Minkowski metric $g_{\mu \nu}=\eta_{\mu \nu}$
- Cartesian:

$$
\left.\eta_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \therefore(d s)^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}\right)
$$

- Spherical polar:

$$
\begin{aligned}
g_{\mu \nu}=\eta_{\mu \nu}= & \left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi) \\
& \therefore(d s)^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
\end{aligned}
$$

The Metric

$$
(d s)^{2}=d x^{\mu} d x_{\mu}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- Flat spacetime: Minkowski metric $g_{\mu \nu}=\eta_{\mu \nu}$
- Cartesian:

$$
\left.\eta_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \therefore(d s)^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-(c d t)^{2}+(d x)^{2}+(d y)^{2}+(d z)^{2}\right)
$$

- Spherical polar:

$$
\begin{aligned}
g_{\mu \nu}=\eta_{\mu \nu}= & \left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \quad d x^{\mu}=(c d t, d r, d \theta, d \phi) \\
& \therefore(d s)^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}=-(c d t)^{2}+(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
\end{aligned}
$$

- Metric depends on spacetime curvature, but also on coordinate system. Line element (spacetime interval) is independent of coordinate system.

The Einstein Field Equations

Spacetime curvature = mass density

The Einstein Field Equations

Spacetime curvature = mass density

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

The Einstein Field Equations

Spacetime curvature = mass density

Einstein tensor
= spacetime curvature
= the metric independent of
coordinate system

The Einstein Field Equations

Spacetime curvature = mass density

Einstein tensor
= spacetime curvature
= the metric independent of coordinate system

Stress-energy tensor
= mass density and pressure In SR, this is:

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
\rho_{0} c^{2} & 0 & 0 & 0 \\
0 & P_{x} & 0 & 0 \\
0 & 0 & P_{y} & 0 \\
0 & 0 & 0 & P_{z}
\end{array}\right)
$$

The Schwarzschild Metric

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

- Solve Einstein equations for spherically symmetric spacetime with $\rho(\mathbf{r})=M \delta^{3}(\mathbf{r})$
- i.e. all mass concentrated at the singularity (a BH).

The Schwarzschild Metric

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

- Solve Einstein equations for spherically symmetric spacetime with $\rho(\mathbf{r})=M \delta^{3}(\mathbf{r})$
- i.e. all mass concentrated at the singularity (a BH).
- Schwarzschild metric:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-\left(1-2 r_{g} / r\right) & 0 & 0 & 0 \\
0 & \left(1-2 r_{g} / r\right)^{-1} & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

- Line element becomes: $(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}$

The Schwarzschild Metric

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

- Solve Einstein equations for spherically symmetric spacetime with $\rho(\mathbf{r})=M \delta^{3}(\mathbf{r})$
- i.e. all mass concentrated at the singularity (a BH).
- Schwarzschild metric:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-\left(1-2 r_{g} / r\right) & 0 & 0 & 0 \\
0 & \left(1-2 r_{g} / r\right)^{-1} & 0 & 0 \\
0 & 0 & r^{2} & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

- Line element becomes: $(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}$
- Tends to Minkowski for large r, but for small r angles of a triangle no longer add up to 180 degrees!

The Schwarzschild Metric

$(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}$

- Singularities at $r=0$ and $r=2 r_{g}$.
- $r=0$ singularity is real, $r=2 r_{g}$ one is only a coordinate singularity (goes away with clever choice of coordinate system).

The Schwarzschild Metric

$(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}$

- Singularities at $r=0$ and $r=2 r_{g}$.
- $r=0$ singularity is real, $r=2 r_{g}$ one is only a coordinate singularity (goes away with clever choice of coordinate system).
- BUT $\mathrm{r}<2 \mathrm{r}_{\mathrm{g}}$ implies $\mathrm{g}_{\mathrm{tt}}<0$ and $\mathrm{g}_{\mathrm{r}}<0$! What does this mean?

The Schwarzschild Metric

$$
(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Singularities at $r=0$ and $r=2 r_{g}$.
- $r=0$ singularity is real, $r=2 r_{g}$ one is only a coordinate singularity (goes away with clever choice of coordinate system).
- BUT $\mathrm{r}<2 \mathrm{r}_{\mathrm{g}}$ implies $\mathrm{g}_{\mathrm{tt}}<0$ and $\mathrm{g}_{\mathrm{r}}<0$! What does this mean?
- Try to orbit Schwarzschild BH at $\mathrm{r}<2 \mathrm{rg}_{\mathrm{g}}$:

$$
(d s)^{2}=\left|1-\frac{2 r_{g}}{r}\right|(c d t)^{2}+(r d \theta)^{2}>0
$$

The Schwarzschild Metric

$$
(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Singularities at $r=0$ and $r=2 r_{g}$.
- $r=0$ singularity is real, $r=2 r_{g}$ one is only a coordinate singularity (goes away with clever choice of coordinate system).
- BUT $\mathrm{r}<2 \mathrm{r}_{\mathrm{g}}$ implies $\mathrm{g}_{\mathrm{tt}}<0$ and $\mathrm{g}_{\mathrm{r}}<0$! What does this mean?
- Try to orbit Schwarzschild BH at $\mathrm{r}<2 \mathrm{r}_{\mathrm{g}}$:

$$
(d s)^{2}=\left|1-\frac{2 r_{g}}{r}\right|(c d t)^{2}+(r d \theta)^{2}>0
$$

- This is spacelike and therefore not a possible worldline! Can only move towards the $r=0$ singularity!
- Therefore the horizon is: $r_{h}=2 r_{g}$

The Schwarzschild Metric

$$
(d s)^{2}=-\left(1-\frac{2 r_{g}}{r}\right)(c d t)^{2}+\frac{(d r)^{2}}{1-2 r_{g} / r}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Singularities at $r=0$ and $r=2 r_{g}$.
- $r=0$ singularity is real, $r=2 r_{g}$ one is only a coordinate singularity (goes away with clever choice of coordinate system).
- BUT $\mathrm{r}<2 \mathrm{r}_{\mathrm{g}}$ implies $\mathrm{g}_{\mathrm{tt}}<0$ and $\mathrm{g}_{\mathrm{r}}<0$! What does this mean?
- Try to orbit Schwarzschild BH at $\mathrm{r}<2 \mathrm{rg}_{\mathrm{g}}$:

$$
(d s)^{2}=\left|1-\frac{2 r_{g}}{r}\right|(c d t)^{2}+(r d \theta)^{2}>0
$$

- This is spacelike and therefore not a possible worldline! Can only move towards the $r=0$ singularity!
- Therefore the horizon is: $r_{h}=2 r_{g}$
- The same as our naive Newtonian guess!

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass $=$ Total energy per unit mass

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity: $\quad \frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E$

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity: $\quad \frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E$

Radial KE per unit mass
Effective potential
Energy per unit mass of particle (constant)

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity:

$$
\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E
$$

Radial KE per unit mass
Effective potential particle (constant)

- Effective potential:

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}
$$

$\mathrm{L}=$ angular momentum per unit mass (vr)

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity:

$$
\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E
$$

Radial KE per unit mass Effective potential particle (constant)

- Effective potential:

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r} \quad \begin{gathered}
\mathrm{L}=\text { angular momentum } \\
\text { per unit mass (vr) }
\end{gathered}
$$

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity:

$$
\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E
$$

Radial KE per unit mass Effective potential particle (constant)

- Effective potential:

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r} \quad \begin{gathered}
\mathrm{L}=\text { angular momentum } \\
\text { per unit mass (vr) }
\end{gathered}
$$

- Circular orbit: $\mathrm{dr} / \mathrm{dt}=0$, so $\mathrm{V}(\mathrm{r})=\mathrm{E}$.

The Innermost Stable Circular Orbit

- Now let's do orbits in the Schwarzschild metric.
- Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass

- Newtonian gravity:

$$
\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+V(r)=E
$$

Radial KE per unit mass Effective potential particle (constant)

- Effective potential:

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}
$$

Centrifugal barrier
Gravitational attraction

- Circular orbit: dr/dt=0, so V(r)=E.
- $\mathrm{E}=$ constant, so for a circular orbit $\mathrm{d} \mathrm{V}(\mathrm{r}) / \mathrm{dr}=0$: circular orbits at turning points of $V(r)$.
- Minima = stable, maxima and inflection points = unstable.

The Innermost Stable Circular Orbit

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}
$$

The Innermost Stable Circular Orbit

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}
$$

$$
\frac{d V}{d r}=-\frac{L^{2}}{r^{3}}+\frac{G M}{r^{2}}=0
$$

The Innermost Stable Circular Orbit

$$
V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}
$$

$$
\frac{d V}{d r}=-\frac{L^{2}}{r^{3}}+\frac{G M}{r^{2}}=0
$$

$$
\therefore L^{2}=G M r
$$

The Innermost Stable Circular Orbit

$$
\begin{aligned}
& V(r)=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r} \\
& \frac{d V}{d r}=-\frac{L^{2}}{r^{3}}+\frac{G M}{r^{2}}=0 \\
& \therefore L^{2}=G M r
\end{aligned}
$$

$L=v r \quad \therefore v^{2} r^{2}=G M r \quad \therefore v^{2}=G M / r$
...Keplerian orbit!

The Innermost Stable Circular Orbit

- For Schwarzschild solution, energy equation becomes:

$$
\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{eff}}^{2}(r)=\left(\frac{E}{c}\right)^{2}
$$

- With effective potential:

$$
V_{\mathrm{eff}}^{2}(r)=\left(1-\frac{2 r_{g}}{r}\right)\left(\frac{L^{2}}{r^{2}}+c^{2}\right)
$$

The Innermost Stable Circular Orbit

- For Schwarzschild solution, energy equation becomes:

$$
\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{eff}}^{2}(r)=\left(\frac{E}{c}\right)^{2}
$$

- With effective potential:

$$
V_{\mathrm{eff}}^{2}(r)=\left(1-\frac{2 r_{g}}{r}\right)\left(\frac{L^{2}}{r^{2}}+c^{2}\right)
$$

- Multiplying out of brackets:

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

The Innermost Stable Circular Orbit

- For Schwarzschild solution, energy equation becomes:

$$
\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{eff}}^{2}(r)=\left(\frac{E}{c}\right)^{2}
$$

- With effective potential:

$$
V_{\mathrm{eff}}^{2}(r)=\left(1-\frac{2 r_{g}}{r}\right)\left(\frac{L^{2}}{r^{2}}+c^{2}\right)
$$

- Multiplying out of brackets:

Centrifugal barrier

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\left(\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}\right)+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

Completely new!
Gravitational attraction

The Innermost Stable Circular Orbit

$\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}$

The Innermost Stable Circular Orbit

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

The Innermost Stable Circular Orbit

$\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}$

The Innermost Stable Circular Orbit

$\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}$

The Innermost Stable Circular Orbit

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

- Find this single point of inflection for a critical value of angular momentum per unit mass.

$$
\frac{d V_{\mathrm{eff}}^{2}}{d r}=0=-\frac{2 L^{2}}{r^{3}}+\frac{2 G M}{r^{2}}+\frac{6 G M L^{2}}{c^{2} r^{4}}
$$

The Innermost Stable Circular Orbit

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

- Find this single point of inflection for a critical value of angular momentum per unit mass.

$$
\frac{d V_{\mathrm{eff}}^{2}}{d r}=0=-\frac{2 L^{2}}{r^{3}}+\frac{2 G M}{r^{2}}+\frac{6 G M L^{2}}{c^{2} r^{4}}
$$

$$
\times r^{4} \Longrightarrow \quad 0=2 G M r^{2}-2 L^{2} r+6 G M L^{2} / c^{2}
$$

The Innermost Stable Circular Orbit

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

- Find this single point of inflection for a critical value of angular momentum per unit mass.

$$
\frac{d V_{\mathrm{eff}}^{2}}{d r}=0=-\frac{2 L^{2}}{r^{3}}+\frac{2 G M}{r^{2}}+\frac{6 G M L^{2}}{c^{2} r^{4}}
$$

$$
\times r^{4} \Longrightarrow \quad 0=2 G M r^{2}-2 L^{2} r+6 G M L^{2} / c^{2}
$$

- Quadratic formula:

$$
r=\frac{2 L^{2} \pm \sqrt{4 L^{4}-4.2 G M .6 G M L^{2} / c^{2}}}{4 G M}
$$

The Innermost Stable Circular Orbit

$$
\frac{V_{\mathrm{eff}}^{2}(r)}{2}=\frac{L^{2}}{2 r^{2}}-\frac{G M}{r}+\frac{c^{2}}{2}-\frac{G M L^{2}}{c^{2} r^{3}}
$$

- Find this single point of inflection for a critical value of angular momentum per unit mass.

$$
\frac{d V_{\mathrm{eff}}^{2}}{d r}=0=-\frac{2 L^{2}}{r^{3}}+\frac{2 G M}{r^{2}}+\frac{6 G M L^{2}}{c^{2} r^{4}}
$$

$$
\times r^{4} \Longrightarrow \quad 0=2 G M r^{2}-2 L^{2} r+6 G M L^{2} / c^{2}
$$

- Quadratic formula:

$$
\begin{aligned}
& r=\frac{2 L^{2} \pm \sqrt{4 L^{4}-4.2 G M .6 G M L^{2} / c^{2}}}{4 G M} \\
& r=\frac{L^{2}}{2 G M}\left[1 \pm \sqrt{1-12\left(\frac{G M}{c L}\right)^{2}}\right]
\end{aligned}
$$

...two solutions: stable and unstable!

The Innermost Stable Circular Orbit

$$
r=\frac{L^{2}}{2 G M}\left[1 \pm \sqrt{1-12\left(\frac{G M}{c L}\right)^{2}}\right]
$$

The Innermost Stable Circular Orbit

$$
r=\frac{L^{2}}{2 G M}\left[1 \pm \sqrt{1-12\left(\frac{G M}{c L}\right)^{2}}\right]
$$

- Only one solution for: $L^{2}=L_{\text {crit }}^{2}=12(G M / c)^{2}$
- No solutions for: $L<L_{\text {crit }}^{2}$

The Innermost Stable Circular Orbit

$$
r=\frac{L^{2}}{2 G M}\left[1 \pm \sqrt{1-12\left(\frac{G M}{c L}\right)^{2}}\right]
$$

- Only one solution for: $L^{2}=L_{\text {crit }}^{2}=12(G M / c)^{2}$
- No solutions for: $L<L_{\text {crit }}^{2}$
- Therefore ISCO at:

$$
r_{\text {isco }}=\frac{L_{\text {crit }}^{2}}{2 G M}=\frac{12(G M)^{2}}{2 G M c^{2}}=6 r_{g}
$$

- Inside $6 \mathrm{rg}_{\mathrm{g}}$, can still in principle escape the BH, but can't orbit without help!

The Kerr Metric

- If the BH is spinning, no longer have spherical symmetry, only azimuthal.
- Kerr solution (Kerr 1960) is:

$$
g_{t t}=-\left(1-\frac{2 r}{r_{g} \Sigma}\right) \quad g_{t \phi}=g_{\phi t}=\frac{2 a r \sin ^{2} \theta}{r_{g} \Sigma} \quad g_{r r}=\frac{\Sigma}{\Delta} \quad g_{\theta \theta}=\Sigma \quad g_{\phi \phi}=\frac{\mathscr{A} \sin ^{2} \theta}{\Sigma}
$$

$\Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2} \quad \mathscr{A}=\left[\left(r / r_{g}\right)^{2}+a^{2}\right]^{2}-\Delta a^{2} \sin ^{2} \theta$

The Kerr Metric

- If the BH is spinning, no longer have spherical symmetry, only azimuthal.
- Kerr solution (Kerr 1960) is:

$$
g_{t t}=-\left(1-\frac{2 r}{r_{g} \Sigma}\right) \quad g_{t \phi}=g_{\phi t}=\frac{2 a r \sin ^{2} \theta}{r_{g} \Sigma} \quad g_{r r}=\frac{\Sigma}{\Delta} \quad g_{\theta \theta}=\Sigma \quad g_{\phi \phi}=\frac{\mathscr{A} \sin ^{2} \theta}{\Sigma}
$$

$$
\Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2} \quad \mathscr{A}=\left[\left(r / r_{g}\right)^{2}+a^{2}\right]^{2}-\Delta a^{2} \sin ^{2} \theta
$$

- a is the dimensionless spin parameter: $\quad a=\frac{J_{\mathrm{bh}}}{M c r_{g}}$

The Kerr Metric

- If the BH is spinning, no longer have spherical symmetry, only azimuthal.
- Kerr solution (Kerr 1960) is:

$$
g_{t t}=-\left(1-\frac{2 r}{r_{g} \Sigma}\right) \quad g_{t \phi}=g_{\phi t}=\frac{2 a r \sin ^{2} \theta}{r_{g} \Sigma} \quad g_{r r}=\frac{\Sigma}{\Delta} \quad g_{\theta \theta}=\Sigma \quad g_{\phi \phi}=\frac{\mathscr{A} \sin ^{2} \theta}{\Sigma}
$$

$$
\Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2} \quad \mathscr{A}=\left[\left(r / r_{g}\right)^{2}+a^{2}\right]^{2}-\Delta a^{2} \sin ^{2} \theta
$$

- a is the dimensionless spin parameter: $\quad a=\frac{J_{\mathrm{bh}}}{M c r_{g}}$
- Boyer-Lindquist coordinates:

$$
\begin{aligned}
& x=r_{g} \sqrt{\left(r / r_{g}\right)^{2}+a^{2}} \sin \theta \cos \phi \\
& y=r_{g} \sqrt{\left(r / r_{g}\right)^{2}+a^{2}} \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

The Kerr Metric

- Cross term = Frame Dragging Effect

$$
g_{t \phi}=g_{\phi t}=\frac{2 a r \sin ^{2} \theta}{r_{g} \Sigma}
$$

- Kerr BH drags spacetime around with it.
- Gives rise to (among other things) Lense-Thirring precession - a vertical wobble of orbits in a plane inclined to the BH equatorial plane.

$$
a=0 \quad a>0
$$

The Kerr Metric

- Horizon is still at coordinate singularity of $\mathrm{grr}_{\mathrm{r}}$:

$$
g_{r r}=\frac{\Sigma}{\Delta} \quad \Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2}
$$

The Kerr Metric

- Horizon is still at coordinate singularity of $\mathrm{grr}_{\mathrm{r}}$:

$$
\left.\begin{array}{rl}
g_{r r}= & \frac{\Sigma}{\Delta} \quad \Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta
\end{array} \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2}\right)
$$

$$
a=0
$$

$$
a>0
$$

The Kerr Metric

- Horizon is still at coordinate singularity of $\mathrm{grr}_{\mathrm{r}}$:

$$
\left.\begin{array}{rl}
g_{r r}= & \frac{\Sigma}{\Delta} \quad \Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta
\end{array} \quad \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2}\right)
$$

- Causality: $-1 \leq a \leq 1$ where +ve is prograde and -ve is retrograde.

$$
a=0 \quad a>0
$$

The Kerr Metric

- Horizon is still at coordinate singularity of g_{r} :

$$
\begin{array}{rlr}
g_{r r}= & \frac{\Sigma}{\Delta} \quad \Sigma=\left(r / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta & \Delta=\left(r / r_{g}\right)^{2}-2\left(r / r_{g}\right)+a^{2} \\
& \frac{\left(r_{h} / r_{g}\right)^{2}-2\left(r_{h} / r_{g}\right)+a^{2}}{\left(r_{h} / r_{g}\right)^{2}+a^{2} \cos ^{2} \theta}=0 \quad \Longrightarrow \quad r_{h} / r_{g}=1+\sqrt{1-a^{2}}
\end{array}
$$

- Causality: $-1 \leq a \leq 1$ where +ve is prograde and -ve is retrograde.
- Can think of this like a rotating floor giving angular momentum in one direction and taking in the other.

$$
a=0 \quad a>0
$$

The Kerr Metric

- ISCO changes with spin:

The Kerr Metric

- What's going on at $\mathrm{a}=1$? ISCO and horizon both at 1 rg , but not in the same place! Break down of B-L coordinates.

Bardeen, Press \& Teukolsky (1972)

Accreting Black Holes

Black Hole X-ray Binaries

$$
\sim 100 \mathrm{~km}
$$

Black hole ~ 10 Solar masses

Active Galactic Nuclei

Black hole $\sim 10^{6}-10^{10}$ Solar masses

Accreting Black Holes

Black Hole X-ray Binaries

$\sim 100 \mathrm{~km}$

Black hole ~ 10 Solar masses

Active Galactic Nuclei

Power supply: gravitational potential energy of accreting material. Therefore luminosity is the rest mass energy of accreted material multiplied by some efficiency factor: $L=\epsilon \dot{M} c^{2}$

Eddington Limit

Theoretical maximum luminosity when outwards radiation force balances inwards gravitational force. Above this luminosity, accreting material will be thrown off in winds.

Eddington Limit

Theoretical maximum luminosity when outwards radiation force balances inwards gravitational force. Above this luminosity, accreting material will be thrown off in winds.

Assumptions:

- Spherical symmetry
- Dominant opacity = electron scattering (Thomson absorption cross-section).
- Gravity acts predominantly on protons.

Eddington Limit
 Energy flux at $r: \quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$

Eddington Limit

Energy flux at r : $\quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux (E=pc for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$

Eddington Limit

Energy flux at $r: \quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux ($\mathrm{E}=\mathrm{pc}$ for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$
Outward radiation force on each electron: $=\frac{d p}{d t}=\frac{L}{4 \pi c r^{2}} \sigma_{T}$

Eddington Limit

Energy flux at r : $\quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux (E=pc for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$
Outward radiation force on each electron: $=\frac{d p}{d t}=\frac{L}{4 \pi c r^{2}} \sigma_{T}$
Inward gravitational force on each proton: $=\frac{G M m_{p}}{r^{2}}$

Eddington Limit

Energy flux at $r: \quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux ($\mathrm{E}=\mathrm{pc}$ for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$
Outward radiation force on each electron: $=\frac{d p}{d t}=\frac{L}{4 \pi c r^{2}} \sigma_{T}$
Inward gravitational force on each proton: $=\frac{G M m_{p}}{r^{2}}$
Neutral material therefore can set the two equal for the Eddington limit:

$$
\frac{L_{\mathrm{Edd}}}{4 \pi c r^{2}} \sigma_{T}=\frac{G M m_{p}}{r^{2}} \quad \therefore L_{\mathrm{Edd}}=\frac{4 \pi G M c m_{p}}{\sigma_{T}}
$$

Eddington Limit

Energy flux at $r: \quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux ($\mathrm{E}=\mathrm{pc}$ for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$
Outward radiation force on each electron: $=\frac{d p}{d t}=\frac{L}{4 \pi c r^{2}} \sigma_{T}$
Inward gravitational force on each proton: $=\frac{G M m_{p}}{r^{2}}$
Neutral material therefore can set the two equal for the Eddington limit:

$$
\frac{L_{\mathrm{Edd}}}{4 \pi c r^{2}} \sigma_{T}=\frac{G M m_{p}}{r^{2}} \quad \therefore L_{\mathrm{Edd}}=\frac{4 \pi G M c m_{p}}{\sigma_{T}}
$$

Therefore can also define Eddington accretion rate:

$$
\dot{M}_{\mathrm{Edd}}=\frac{4 \pi G M m_{p}}{\epsilon c \sigma_{T}}
$$

Eddington Limit

Energy flux at $r: \quad \frac{d E}{d t d A}=\frac{L}{4 \pi r^{2}}$
Momentum flux ($\mathrm{E}=\mathrm{pc}$ for photons): $\quad \frac{d p}{d t d A}=\frac{d E}{c d t d A}=\frac{L}{4 \pi c r^{2}}$
Outward radiation force on each electron: $=\frac{d p}{d t}=\frac{L}{4 \pi c r^{2}} \sigma_{T}$
Inward gravitational force on each proton: $=\frac{G M m_{p}}{r^{2}}$
Neutral material therefore can set the two equal for the Eddington limit:

$$
\frac{L_{\mathrm{Edd}}}{4 \pi c r^{2}} \sigma_{T}=\frac{G M m_{p}}{r^{2}} \quad \therefore L_{\mathrm{Edd}}=\frac{4 \pi G M c m_{p}}{\sigma_{T}}
$$

Therefore can also define Eddington accretion rate:

$$
\dot{M}_{\mathrm{Edd}}=\frac{4 \pi G M m_{p}}{\epsilon c \sigma_{T}}
$$

Therefore AGN can be much more luminous than X-ray binaries after all!

