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• All mass, M, in a singularity

• Event Horizon:              !

• Newtonian approx:

• Size scale: gravitational radius: 

vesc = c
v2

esc = 2GM/r ⟹ rh = 2GM/c2
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Black Holes for Babies
• All mass, M, in a singularity

• Event Horizon:              !

• Newtonian approx:

• Size scale: gravitational radius: 

vesc = c
v2

esc = 2GM/r ⟹ rh = 2GM/c2

rg = GM/c2

Symbol rg was gyroradius; 
is now gravitational radius!
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• In GR, gravity = curvature. That is, mass density induces curvature in 

spacetime, which affects trajectories of test masses.
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Black Holes in GR
• In GR, gravity = curvature. That is, mass density induces curvature in 

spacetime, which affects trajectories of test masses.

• What does spacetime curvature mean? Well, in flat 3D space we have that 

the distance between two points is given by Pythagorus’ theorem:


• In curved 3D space, it is not given by Pythagorus.

• In SR, include time into 4D spacetime — introduce spacetime interval. For 

flat spacetime, this is:


• Position of minus sign is just a choice.

(ds)2 = − (cdt)2 + (dx)2 + (dy)2 + (dz)2 = − (cdt)2 + (dr)2 + (rdθ)2 + (r sin θdϕ)2

(dℓ)2 = (dx)2 + (dy)2 + (dz)2 = (dr)2 + (rdθ)2 + (r sin θdϕ)2
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Black Holes in GR
• What is the spacetime interval? Simply related to the proper time interval:


• Demonstration for radial motion:


(ds)2 = − (cdτ)2

−(cdτ)2 = − (cdt)2 + (dr)2

( dτ
dt )

2

= 1 − ( v
c )

2

(dt)2 =
(dτ)2

1 − (v/c)2
= γ2(dτ)2

× (cdt)−2 ⟹



Black Holes in GR
• What is the spacetime interval? Simply related to the proper time interval:


• Demonstration for radial motion:


• Can either have minus sign in front of coordinate time and proper time or in 
front of spatial coordinates.


(ds)2 = − (cdτ)2

−(cdτ)2 = − (cdt)2 + (dr)2

( dτ
dt )

2

= 1 − ( v
c )

2

(dt)2 =
(dτ)2

1 − (v/c)2
= γ2(dτ)2

× (cdt)−2 ⟹



• Allowed worldlines are timelike — I.e. involve travelling slower than c.

• Timelike = separated by more time than space:

(ds)2 = − (cdt)2 + (dx)2 + (dy)2 + (dz)2 = − (cdt)2 + (dr)2 + (rdθ)2 + (r sin θdϕ)2
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• Allowed worldlines are timelike — I.e. involve travelling slower than c.

• Timelike = separated by more time than space:

• A spacelike wolrdline connects two points that are not causally connected.

• Spacelike = separated by more space than time:
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• Allowed worldlines are timelike — I.e. involve travelling slower than c.

• Timelike = separated by more time than space:

• A spacelike wolrdline connects two points that are not causally connected.

• Spacelike = separated by more space than time:

• Light travels at c on null worldlines:

(ds)2 = − (cdt)2 + (dx)2 + (dy)2 + (dz)2 = − (cdt)2 + (dr)2 + (rdθ)2 + (r sin θdϕ)2
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Black Holes in GR

(ds)2 < 0

(ds)2 > 0
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dot product!
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• In GR, implement spacetime curvature by introducing a new definition of the 
dot product!


• Define 4-vectors:

• Tensors: 


• Convention: greek letters run 0-3, Roman letters run 1-3

• Dot product is now:


• Einstein sum convention: repeated index implies a sum, top and bottom 
must be balanced.

The Metric

dxμ = (cdt, dx, dy, dz) dxμ = (cdt, dr, dθ, dϕ)

dxμdxμ ≡ dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3

Aμ = vector Aμν = 2D matrix Aμνσ = 3D matrix

xμ = contravariant tensor xμ = covariant tensor



• In GR, implement spacetime curvature by introducing a new definition of the 
dot product!


• Define 4-vectors:

• Tensors: 


• Convention: greek letters run 0-3, Roman letters run 1-3

• Dot product is now:


• Einstein sum convention: repeated index implies a sum, top and bottom 
must be balanced.


• How to get from contravariant tensor to covariant tensor? The metric:  


The Metric

dxμ = (cdt, dx, dy, dz) dxμ = (cdt, dr, dθ, dϕ)

dxμdxμ ≡ dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3

Aμ = vector Aμν = 2D matrix Aμνσ = 3D matrix

Aμ = gμνAν = gμ0A0 + gμ1A1 + gμ2A2 + gμ3A3

xμ = contravariant tensor xμ = covariant tensor



• In GR, implement spacetime curvature by introducing a new definition of the 
dot product!


• Define 4-vectors:

• Tensors: 


• Convention: greek letters run 0-3, Roman letters run 1-3

• Dot product is now:


• Einstein sum convention: repeated index implies a sum, top and bottom 
must be balanced.


• How to get from contravariant tensor to covariant tensor? The metric:  


• Therefore spacetime interval (=line element):

The Metric

dxμ = (cdt, dx, dy, dz) dxμ = (cdt, dr, dθ, dϕ)

dxμdxμ ≡ dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3

Aμ = vector Aμν = 2D matrix Aμνσ = 3D matrix

Aμ = gμνAν = gμ0A0 + gμ1A1 + gμ2A2 + gμ3A3

(ds)2 = dxμdxμ = gμνdxμdxν

xμ = contravariant tensor xμ = covariant tensor



The Metric
(ds)2 = dxμdxμ = gμνdxμdxν



• Flat spacetime: Minkowski metric
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• Flat spacetime: Minkowski metric


• Cartesian:

The Metric

ημν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ∴ (ds)2 = ημνdxμdxν = − (cdt)2 + (dx)2 + (dy)2 + (dz)2
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• Flat spacetime: Minkowski metric


• Cartesian:


• Spherical polar:

The Metric

ημν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ∴ (ds)2 = ημνdxμdxν = − (cdt)2 + (dx)2 + (dy)2 + (dz)2

dxμ = (cdt, dx, dy, dz)

(ds)2 = dxμdxμ = gμνdxμdxν

gμν = ημν

gμν = ημν =

−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

∴ (ds)2 = ημνdxμdxν = − (cdt)2 + (dr)2 + (rdθ)2 + (r sin θ dϕ)2

dxμ = (cdt, dr, dθ, dϕ)



• Flat spacetime: Minkowski metric


• Cartesian:


• Spherical polar:


• Metric depends on spacetime curvature, but also on coordinate system. 
Line element (spacetime interval) is independent of coordinate system.

The Metric

ημν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ∴ (ds)2 = ημνdxμdxν = − (cdt)2 + (dx)2 + (dy)2 + (dz)2

dxμ = (cdt, dx, dy, dz)

(ds)2 = dxμdxμ = gμνdxμdxν

gμν = ημν

gμν = ημν =

−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

∴ (ds)2 = ημνdxμdxν = − (cdt)2 + (dr)2 + (rdθ)2 + (r sin θ dϕ)2

dxμ = (cdt, dr, dθ, dϕ)
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Spacetime curvature = mass density

The Einstein Field Equations

Gμν = 8π
G
c4

Tμν

Einstein tensor 
= spacetime curvature

= the metric independent of 
coordinate system

Stress-energy tensor 
= mass density and pressure

In SR, this is:

Tμν =

ρ0c2 0 0 0
0 Px 0 0
0 0 Py 0
0 0 0 Pz



The Schwarzschild Metric
Gμν = 8π

G
c4

Tμν

• Solve Einstein equations for spherically symmetric spacetime with


• i.e. all mass concentrated at the singularity (a BH).

ρ(r) = M δ3(r)



The Schwarzschild Metric
Gμν = 8π

G
c4

Tμν

• Solve Einstein equations for spherically symmetric spacetime with


• i.e. all mass concentrated at the singularity (a BH).

• Schwarzschild metric:


• Line element becomes:

ρ(r) = M δ3(r)

(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg /r
+ (rdθ)2 + (r sin θdϕ)2

gμν =

−(1 − 2rg /r) 0 0 0

0 (1 − 2rg /r)−1 0 0

0 0 r2 0
0 0 0 r2 sin2 θ



The Schwarzschild Metric
Gμν = 8π

G
c4

Tμν

• Solve Einstein equations for spherically symmetric spacetime with


• i.e. all mass concentrated at the singularity (a BH).

• Schwarzschild metric:


• Line element becomes:


• Tends to Minkowski for large r, but for small r angles of a triangle no longer 
add up to 180 degrees!


ρ(r) = M δ3(r)

(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg /r
+ (rdθ)2 + (r sin θdϕ)2

gμν =

−(1 − 2rg /r) 0 0 0

0 (1 − 2rg /r)−1 0 0

0 0 r2 0
0 0 0 r2 sin2 θ



The Schwarzschild Metric

• Singularities at r=0 and r=2rg.

• r=0 singularity is real, r=2rg one is only a coordinate singularity (goes away 

with clever choice of coordinate system).

(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg/r
+ (rdθ)2 + (r sin θdϕ)2



The Schwarzschild Metric

• Singularities at r=0 and r=2rg.

• r=0 singularity is real, r=2rg one is only a coordinate singularity (goes away 

with clever choice of coordinate system).

• BUT r<2rg implies gtt<0 and grr<0! What does this mean?

(ds)2 = − (1 −
2rg

r )(cdt)2 +
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+ (rdθ)2 + (r sin θdϕ)2



The Schwarzschild Metric

• Singularities at r=0 and r=2rg.

• r=0 singularity is real, r=2rg one is only a coordinate singularity (goes away 

with clever choice of coordinate system).

• BUT r<2rg implies gtt<0 and grr<0! What does this mean?

• Try to orbit Schwarzschild BH at r<2rg:


(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg/r
+ (rdθ)2 + (r sin θdϕ)2

(ds)2 = 1 −
2rg

r
(cdt)2 + (rdθ)2 > 0



The Schwarzschild Metric

• Singularities at r=0 and r=2rg.

• r=0 singularity is real, r=2rg one is only a coordinate singularity (goes away 

with clever choice of coordinate system).

• BUT r<2rg implies gtt<0 and grr<0! What does this mean?

• Try to orbit Schwarzschild BH at r<2rg:


• This is spacelike and therefore not a possible worldline! Can only move 
towards the r=0 singularity!


• Therefore the horizon is:


(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg/r
+ (rdθ)2 + (r sin θdϕ)2

(ds)2 = 1 −
2rg

r
(cdt)2 + (rdθ)2 > 0
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The Schwarzschild Metric

• Singularities at r=0 and r=2rg.

• r=0 singularity is real, r=2rg one is only a coordinate singularity (goes away 

with clever choice of coordinate system).

• BUT r<2rg implies gtt<0 and grr<0! What does this mean?

• Try to orbit Schwarzschild BH at r<2rg:


• This is spacelike and therefore not a possible worldline! Can only move 
towards the r=0 singularity!


• Therefore the horizon is:


• The same as our naive Newtonian guess!


(ds)2 = − (1 −
2rg

r )(cdt)2 +
(dr)2

1 − 2rg/r
+ (rdθ)2 + (r sin θdϕ)2

(ds)2 = 1 −
2rg

r
(cdt)2 + (rdθ)2 > 0

rh = 2 rg



The Innermost Stable Circular Orbit
• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:

KE per unit mass + PE per unit mass = Total energy per unit mass
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+ V(r) = E
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• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:


• Newtonian gravity:


KE per unit mass + PE per unit mass = Total energy per unit mass

E
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Energy per unit mass of 
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The Innermost Stable Circular Orbit
• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:


• Newtonian gravity:


• Effective potential:


KE per unit mass + PE per unit mass = Total energy per unit mass

E

1
2 ( dr

dt )
2

+ V(r) = E

Radial KE per unit mass Effective potential
Energy per unit mass of 

particle (constant)

V(r) =
L2

2r2
−

GM
r

L = angular momentum 
per unit mass (vr)



The Innermost Stable Circular Orbit
• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:


• Newtonian gravity:


• Effective potential:


KE per unit mass + PE per unit mass = Total energy per unit mass

E

1
2 ( dr
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2

+ V(r) = E

Radial KE per unit mass Effective potential
Energy per unit mass of 

particle (constant)

V(r) =
L2

2r2
−

GM
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Centrifugal barrier Gravitational attraction

L = angular momentum 
per unit mass (vr)



The Innermost Stable Circular Orbit
• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:


• Newtonian gravity:


• Effective potential:


• Circular orbit: dr/dt=0, so V(r)=E.

KE per unit mass + PE per unit mass = Total energy per unit mass

E

1
2 ( dr

dt )
2

+ V(r) = E

Radial KE per unit mass Effective potential
Energy per unit mass of 

particle (constant)

V(r) =
L2

2r2
−

GM
r

Centrifugal barrier Gravitational attraction

L = angular momentum 
per unit mass (vr)



The Innermost Stable Circular Orbit
• Now let’s do orbits in the Schwarzschild metric.

• Energy equation:


• Newtonian gravity:


• Effective potential:


• Circular orbit: dr/dt=0, so V(r)=E.

• E=constant, so for a circular orbit dV(r)/dr=0: circular orbits at turning points 

of V(r).

• Minima = stable, maxima and inflection points = unstable.

KE per unit mass + PE per unit mass = Total energy per unit mass

E

1
2 ( dr

dt )
2

+ V(r) = E

Radial KE per unit mass Effective potential
Energy per unit mass of 

particle (constant)

V(r) =
L2

2r2
−

GM
r

Centrifugal barrier Gravitational attraction

L = angular momentum 
per unit mass (vr)



The Innermost Stable Circular Orbit

V(r) =
L2

2r2
−

GM
r
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Gravitational attraction

Centrifugal barrier



The Innermost Stable Circular Orbit

V(r) =
L2

2r2
−

GM
r

102 5 20−
0
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0
0
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V
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ff
(R

)

R/Rg

dV
dr

= −
L2

r3
+

GM
r2

= 0
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−

GM
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+

GM
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= 0
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The Innermost Stable Circular Orbit

V(r) =
L2

2r2
−

GM
r

102 5 20−
0
.5

0
0
.5

1

V
e

ff
(R

)

R/Rg

dV
dr

= −
L2

r3
+

GM
r2

= 0

∴ L2 = GMr

L = vr ∴ v2r2 = GMr ∴ v2 = GM/r

…Keplerian orbit!



The Innermost Stable Circular Orbit
• For Schwarzschild solution, energy equation becomes:


• With effective potential:


( dr
dτ )

2

+ V2
eff(r) = ( E

c )
2

V2
eff(r) = (1 −

2rg

r ) ( L2

r2
+ c2)



The Innermost Stable Circular Orbit
• For Schwarzschild solution, energy equation becomes:


• With effective potential:


• Multiplying out of brackets:

( dr
dτ )

2

+ V2
eff(r) = ( E

c )
2

V2
eff(r) = (1 −

2rg

r ) ( L2

r2
+ c2)

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3



The Innermost Stable Circular Orbit
• For Schwarzschild solution, energy equation becomes:


• With effective potential:


• Multiplying out of brackets:

( dr
dτ )

2

+ V2
eff(r) = ( E

c )
2

V2
eff(r) = (1 −

2rg

r ) ( L2

r2
+ c2)

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3

Centrifugal barrier

Gravitational attraction
Completely new!



The Innermost Stable Circular Orbit
V2

eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3
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The Innermost Stable Circular Orbit

102 5 20−
0

.5
0

0
.5

1

V
e
ff
(R

)

R/Rg

L2 = 15(GM/c)2

Stable Solution

Unstable 
Solution

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3



The Innermost Stable Circular Orbit
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Solution

V2
eff(r)
2

=
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−
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−
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The Innermost Stable Circular Orbit

102 5 20−
0

.5
0

0
.5

1

V
e
ff
(R

)

R/Rg

L2 = 10(GM/c)2

No Solution!

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
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−

GML2

c2r3



The Innermost Stable Circular Orbit

• Find this single point of inflection for a critical value of angular momentum 
per unit mass.


V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3

dV2
eff

dr
= 0 = −

2L2

r3
+

2GM
r2

+
6GML2

c2r4



The Innermost Stable Circular Orbit

• Find this single point of inflection for a critical value of angular momentum 
per unit mass.


0 = 2GMr2 − 2L2r + 6GML2/c2× r4 ⟹

dV2
eff

dr
= 0 = −

2L2

r3
+

2GM
r2

+
6GML2

c2r4

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3



The Innermost Stable Circular Orbit

• Find this single point of inflection for a critical value of angular momentum 
per unit mass.


• Quadratic formula:

× r4 ⟹

r =
2L2 ± 4L4 − 4.2GM.6GML2/c2

4GM

dV2
eff

dr
= 0 = −

2L2

r3
+

2GM
r2

+
6GML2

c2r4

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3

0 = 2GMr2 − 2L2r + 6GML2/c2



The Innermost Stable Circular Orbit

• Find this single point of inflection for a critical value of angular momentum 
per unit mass.


• Quadratic formula:

× r4 ⟹

r =
L2

2GM
1 ± 1 − 12 ( GM

cL )
2

…two solutions: 
stable and unstable!

dV2
eff

dr
= 0 = −

2L2

r3
+

2GM
r2

+
6GML2

c2r4

V2
eff(r)
2

=
L2

2r2
−

GM
r

+
c2

2
−

GML2

c2r3

0 = 2GMr2 − 2L2r + 6GML2/c2

r =
2L2 ± 4L4 − 4.2GM.6GML2/c2

4GM



The Innermost Stable Circular Orbit
r =

L2

2GM
1 ± 1 − 12 ( GM

cL )
2



The Innermost Stable Circular Orbit

• Only one solution for:


• No solutions for: 


r =
L2

2GM
1 ± 1 − 12 ( GM

cL )
2

L < L2
crit

L2 = L2
crit = 12(GM/c)2



The Innermost Stable Circular Orbit

• Only one solution for:


• No solutions for: 


• Therefore ISCO at: 


• Inside 6 rg, can still in principle escape the BH, but can’t orbit without help!

r =
L2

2GM
1 ± 1 − 12 ( GM

cL )
2

L < L2
crit

L2 = L2
crit = 12(GM/c)2

risco =
L2

crit

2GM
=

12(GM)2

2GMc2
= 6 rg



The Kerr Metric
• If the BH is spinning, no longer have spherical symmetry, only azimuthal.

• Kerr solution (Kerr 1960) is:


gtt = − (1 −
2r
rgΣ ) gtϕ = gϕt =

2ar sin2 θ
rgΣ

grr =
Σ
Δ

gθθ = Σ gϕϕ =
𝒜 sin2 θ

Σ

Σ = (r/rg)2 + a2 cos2 θ Δ = (r/rg)2 − 2(r/rg) + a2 𝒜 = [(r/rg)2 + a2]2 − Δa2 sin2 θ
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• a is the dimensionless spin parameter:
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The Kerr Metric
• If the BH is spinning, no longer have spherical symmetry, only azimuthal.

• Kerr solution (Kerr 1960) is:


• a is the dimensionless spin parameter:


• Boyer-Lindquist coordinates:

gtt = − (1 −
2r
rgΣ ) gtϕ = gϕt =

2ar sin2 θ
rgΣ

grr =
Σ
Δ

gθθ = Σ gϕϕ =
𝒜 sin2 θ

Σ

Σ = (r/rg)2 + a2 cos2 θ Δ = (r/rg)2 − 2(r/rg) + a2 𝒜 = [(r/rg)2 + a2]2 − Δa2 sin2 θ

a =
Jbh

Mcrg

x = rg (r/rg)2 + a2 sin θ cos ϕ

y = rg (r/rg)2 + a2 sin θ sin ϕ

z = r cos θ



The Kerr Metric
• Cross term = Frame Dragging Effect 

• Kerr BH drags spacetime around with it.


• Gives rise to (among other things) Lense-Thirring precession — a vertical 
wobble of orbits in a plane inclined to the BH equatorial plane. 

gtϕ = gϕt =
2ar sin2 θ

rgΣ

a = 0 a > 0



The Kerr Metric
• Horizon is still at coordinate singularity of grr:


a = 0 a > 0

grr =
Σ
Δ

Σ = (r/rg)2 + a2 cos2 θ Δ = (r/rg)2 − 2(r/rg) + a2



The Kerr Metric
• Horizon is still at coordinate singularity of grr:
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The Kerr Metric
• Horizon is still at coordinate singularity of grr:


• Causality:                    where +ve is prograde and -ve is retrograde.

a = 0 a > 0

grr =
Σ
Δ

Σ = (r/rg)2 + a2 cos2 θ Δ = (r/rg)2 − 2(r/rg) + a2

(rh /rg)2 − 2(rh /rg) + a2

(rh /rg)2 + a2 cos2 θ
= 0 ⟹ rh /rg = 1 + 1 − a2

−1 ≤ a ≤ 1



The Kerr Metric
• Horizon is still at coordinate singularity of grr:


• Causality:                    where +ve is prograde and -ve is retrograde.

• Can think of this like a rotating floor giving angular momentum in one 

direction and taking in the other. 
a = 0 a > 0

grr =
Σ
Δ

Σ = (r/rg)2 + a2 cos2 θ Δ = (r/rg)2 − 2(r/rg) + a2

(rh /rg)2 − 2(rh /rg) + a2

(rh /rg)2 + a2 cos2 θ
= 0 ⟹ rh /rg = 1 + 1 − a2

−1 ≤ a ≤ 1



The Kerr Metric
• ISCO changes with spin:

−1 −0.5 0 0.5 1

2
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a



The Kerr Metric
• What’s going on at a=1? ISCO and horizon both at 1rg, but not in the same 

place! Break down of B-L coordinates.

Bardeen, Press & Teukolsky (1972)

ISCO

Horizon
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Black Hole X-ray Binaries Active Galactic Nuclei

Black hole ~ 106-1010 Solar masses

~100 km ~millions-billions of  km

Black hole ~ 10 Solar masses

~100 km

Accreting Black Holes

Power supply: gravitational potential energy of accreting material.

Therefore luminosity is the rest mass energy of accreted material multiplied by 
some efficiency factor: L = ϵ ·Mc2



Eddington Limit
Theoretical maximum luminosity when outwards radiation force balances 
inwards gravitational force. Above this luminosity, accreting material will be 
thrown off in winds.




Eddington Limit
Theoretical maximum luminosity when outwards radiation force balances 
inwards gravitational force. Above this luminosity, accreting material will be 
thrown off in winds.


Assumptions:

• Spherical symmetry

• Dominant opacity = electron scattering (Thomson absorption cross-section).

• Gravity acts predominantly on protons.
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Neutral material therefore can set the two equal for the Eddington limit:

dp
dtdA

=
dE

c dt dA
=

L
4πcr2

dE
dtdA

=
L

4πr2

=
dp
dt

=
L

4πcr2
σT

=
GMmp

r2

LEdd

4πcr2
σT =

GMmp

r2
∴ LEdd =

4πGMcmp

σT



Eddington Limit
Energy flux at r:
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Eddington Limit
Energy flux at r:


Momentum flux (E=pc for photons):


Outward radiation force on each electron:


Inward gravitational force on each proton: 


Neutral material therefore can set the two equal for the Eddington limit:


Therefore can also define Eddington accretion rate:


Therefore AGN can be much more luminous than X-ray binaries after all!

dp
dtdA

=
dE

c dt dA
=

L
4πcr2

dE
dtdA

=
L

4πr2

=
dp
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=
L
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σT

=
GMmp
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LEdd

4πcr2
σT =

GMmp

r2
∴ LEdd =
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·MEdd =
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