High Energy Astrophysics Dr. Adam Ingram

Lecture 9

Gravitational Waves

Lecture 9

Gravitational Waves

Newtonian Gravitational Waves

- GWs are obviously an inherently relativistic phenomenon.
- BUT we can learn a lot by thinking about the Newtonian gravitational field we feel from a binary BH system.
- The gravitational field changes ever-so-slightly with binary orbital phase.
- Similarities to GWs: the changes in gravitational potential depend on the quadrupole moment, and the frequency of the changes is twice the orbital phase.
- The latter is obvious: we feel the same gravitational force when BH 1 is on the left and BH 2 is on the right as we do when BH 1 is on the right and BH 2 is on the left.

Orbital phase:

$$
\phi(t)=\Omega t
$$

Newtonian Gravitational Waves

- Binary system in x-y plane centred on CoM.
- Phase of BH 1 is ϕ, phase of BH 2 is $\phi+\pi$.

$$
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
$$

- Total mass: $M=M_{1}+M_{2}$; seperation: $r_{a}=r_{1}+r_{2}$

Newtonian Gravitational Waves

- Binary system in x-y plane centred on CoM.
- Phase of BH 1 is ϕ, phase of BH 2 is $\phi+\pi$.

$$
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
$$

- Total mass: $M=M_{1}+M_{2}$; seperation: $r_{a}=r_{1}+r_{2}$
- Observer a distance r from the CoM along vector: $\hat{\mathbf{o}}=(\sin i, 0, \cos i)$
- Vector pointing from BH 1 to observer: $\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{o}}$
- Vector pointing from BH 2 to observer: $\zeta_{2}=-\mathbf{r}_{2}+r \hat{\mathbf{o}}$

Newtonian Gravitational Waves

- Binary system in $x-y$ plane centred on CoM.
- Phase of BH 1 is ϕ, phase of BH 2 is $\phi+\pi$.

$$
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
$$

- Total mass: $M=M_{1}+M_{2}$; seperation: $r_{a}=r_{1}+r_{2}$
- Observer a distance r from the CoM along vector: $\hat{\mathbf{o}}=(\sin i, 0, \cos i)$
- Vector pointing from BH 1 to observer: $\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{o}}$
- Vector pointing from BH 2 to observer: $\zeta_{2}=-\mathbf{r}_{2}+r \hat{\boldsymbol{o}}$
- Gravitational force on observer (mass m) from BH1 in direction of CoM:

$$
F_{1}=\frac{G M_{1} m}{\zeta_{1}^{2}} \frac{\zeta_{1} \cdot \hat{\boldsymbol{o}}}{\zeta_{1}}
$$

Newtonian Gravitational Waves

- Binary system in $x-y$ plane centred on CoM.
- Phase of BH 1 is ϕ, phase of BH 2 is $\phi+\pi$.

$$
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
$$

- Total mass: $M=M_{1}+M_{2}$; seperation: $r_{a}=r_{1}+r_{2}$
- Observer a distance r from the CoM along vector: $\hat{\boldsymbol{o}}=(\sin i, 0, \cos i)$
- Vector pointing from BH 1 to observer: $\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{o}}$
- Vector pointing from BH 2 to observer: $\zeta_{2}=-\mathbf{r}_{2}+r \hat{\boldsymbol{o}}$
- Gravitational force on observer (mass m) from BH 1 in direction of CoM :

$$
F_{1}=\frac{G M_{1} m}{\zeta_{1}^{2}} \frac{\zeta_{1} \cdot \hat{\mathbf{o}}}{\zeta_{1}}
$$

- From $\mathrm{BH} 2: F_{2}=\frac{G M_{2} m}{\zeta_{2}^{2}} \frac{\zeta_{2} \cdot \hat{\mathbf{o}}}{\zeta_{2}}$

Newtonian Gravitational Waves

$$
\begin{gathered}
\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{0}} \quad \zeta_{2}=-\mathbf{r}_{2}+r \hat{\mathbf{o}} \quad \hat{\mathbf{o}}=(\sin i, 0, \cos i) \\
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{gathered}
$$

- Total gravitational force in direction of CoM:

$$
F=\frac{G M_{1} m\left(r-r_{1} \cos \phi \sin i\right)}{\left(r^{2}+r_{1}^{2}-2 r_{1} r \cos \phi \sin i\right)^{3 / 2}}+\frac{G M_{2} m\left(r+r_{2} \cos \phi \sin i\right)}{\left(r^{2}+r_{2}^{2}+2 r_{2} r \cos \phi \sin i\right)^{3 / 2}}
$$

Newtonian Gravitational Waves

$$
\begin{array}{cc}
\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{0}} & \zeta_{2}=-\mathbf{r}_{2}+r \hat{\mathbf{0}} \\
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) & \hat{\mathbf{o}}=(\sin i, 0, \cos i) \\
\mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{array}
$$

- Total gravitational force in direction of CoM:

$$
F=\frac{G M_{1} m\left(r-r_{1} \cos \phi \sin i\right)}{\left(r^{2}+r_{1}^{2}-2 r_{1} r \cos \phi \sin i\right)^{3 / 2}}+\frac{G M_{2} m\left(r+r_{2} \cos \phi \sin i\right)}{\left(r^{2}+r_{2}^{2}+2 r_{2} r \cos \phi \sin i\right)^{3 / 2}}
$$

- $r \gg r_{a} \Longrightarrow$ Binomial expansion:

Newtonian Gravitational Waves

$$
\begin{array}{ccc}
\zeta_{1}=-\mathbf{r}_{1}+r \hat{\mathbf{o}} & \zeta_{2}=-\mathbf{r}_{2}+r \hat{\mathbf{o}} & \hat{\mathbf{o}}=(\sin i, 0, d \\
\mathbf{r}_{\mathbf{1}}=r_{1}(\cos \phi, \sin \phi, 0) & \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{array}
$$

- Total gravitational force in direction of CoM:

$$
F=\frac{G M_{1} m\left(r-r_{1} \cos \phi \sin i\right)}{\left(r^{2}+r_{1}^{2}-2 r_{1} r \cos \phi \sin i\right)^{3 / 2}}+\frac{G M_{2} m\left(r+r_{2} \cos \phi \sin i\right)}{\left(r^{2}+r_{2}^{2}+2 r_{2} r \cos \phi \sin i\right)^{3 / 2}}
$$

- $r \gg r_{a} \Longrightarrow$ Binomial expansion:

$$
\begin{aligned}
F & \approx \frac{G M_{1} m}{r^{3}}\left(r-r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}+3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
& +\frac{G M_{2} m}{r^{3}}\left(r+r_{2} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{2}}{r}\right)^{2}-3\left(\frac{r_{2}}{r}\right) \cos \phi \sin i\right]
\end{aligned}
$$

Newtonian Gravitational Waves

- Simplify to equal mass binary

$$
\begin{aligned}
F & \approx \frac{G M_{1} m}{r^{3}}\left(r-r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}+3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
& +\frac{G M_{1} m}{r^{3}}\left(r+r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}-3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right]
\end{aligned}
$$

Newtonian Gravitational Waves

- Simplify to equal mass binary

$$
\begin{aligned}
F \approx & \frac{G M_{1} m}{r^{3}}\left(r-r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}+3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
& +\frac{G M_{1} m}{r^{3}}\left(r+r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}-3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
F & \approx \frac{G M_{1} m}{r^{3}}\left[2 r-3 \frac{r_{1}^{2}}{r}-6 \frac{r_{1}^{2}}{r} \cos ^{2} \phi \sin ^{2} i\right]
\end{aligned}
$$

Newtonian Gravitational Waves

- Simplify to equal mass binary

$$
\begin{aligned}
F \approx & \frac{G M_{1} m}{r^{3}}\left(r-r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}+3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
& +\frac{G M_{1} m}{r^{3}}\left(r+r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}-3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
F \approx & \approx \frac{G M_{1} m}{r^{3}}\left[2 r-3 \frac{r_{1}^{2}}{r}-6 \frac{r_{1}^{2}}{r} \cos ^{2} \phi \sin ^{2} i\right] \\
F \approx & \frac{G M m}{r^{2}}-\frac{3}{2} \frac{G M m}{r^{4}} r_{1}^{2}\left[1+\sin ^{2} i(1+\cos (2 \Omega t))\right]
\end{aligned}
$$

Newtonian Gravitational Waves

- Simplify to equal mass binary

$$
\begin{aligned}
F \approx & \frac{G M_{1} m}{r^{3}}\left(r-r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}+3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
& +\frac{G M_{1} m}{r^{3}}\left(r+r_{1} \cos \phi \sin i\right)\left[1-\frac{3}{2}\left(\frac{r_{1}}{r}\right)^{2}-3\left(\frac{r_{1}}{r}\right) \cos \phi \sin i\right] \\
F \approx & \frac{G M_{1} m}{r^{3}}\left[2 r-3 \frac{r_{1}^{2}}{r}-6 \frac{r_{1}^{2}}{r} \cos ^{2} \phi \sin ^{2} i\right] \\
F & \approx \frac{G M m}{r^{2}}-\frac{3}{2} \frac{G M m}{r^{4}} r_{1}^{2}\left[1+\sin ^{2} i(1+\cos (2 \Omega t))\right] \\
& \begin{array}{c}
\text { Monopole } \\
\text { term }
\end{array}
\end{aligned}
$$

Newtonian Gravitational Waves

- Express in terms of gravitational potential:

$$
V(r, t) \approx-\frac{G M}{r}+\frac{G M}{2 r^{3}} r_{1}^{2}\left[1+\sin ^{2} i(1+\cos (2 \omega t))\right]
$$

Newtonian Gravitational Waves

- Express in terms of gravitational potential:

$$
V(r, t) \approx-\frac{G M}{r}+\frac{G M}{2 r^{3}} r_{1}^{2}\left[1+\sin ^{2} i(1+\cos (2 \omega t))\right]
$$

- Can write quadrupole potential in terms of the quadrupole moment tensor:

$$
V_{q}(r, t)=\frac{G}{r^{3}}\left\{\sum_{i, j} Q_{i j} \hat{o}_{i} \hat{o}_{j}-\frac{5}{2} Q_{33}\right\}\left\{\begin{array}{l}
\hat{o}_{1}=\sin i \\
\hat{o}_{2}=0 \\
\hat{o}_{3}=\cos i
\end{array}\right.
$$

Newtonian Gravitational Waves

- Express in terms of gravitational potential:

$$
V(r, t) \approx-\frac{G M}{r}+\frac{G M}{2 r^{3}} r_{1}^{2}\left[1+\sin ^{2} i(1+\cos (2 \omega t))\right]
$$

- Can write quadrupole potential in terms of the quadrupole moment tensor:

$$
V_{q}(r, t)=\frac{G}{r^{3}}\left\{\sum_{i, j} Q_{i j} \hat{o}_{i} \hat{o}_{j}-\frac{5}{2} Q_{33}\right\}\left\{\begin{array}{l}
\hat{o}_{1}=\sin i \\
\hat{o}_{2}=0 \\
\hat{o}_{3}=\cos i
\end{array}\right.
$$

- Where:

$$
Q_{i j}=\int \rho(\mathbf{r})\left(r_{i} r_{j}-\frac{1}{3}|\mathbf{r}|^{2} \delta_{i j}\right) d^{3} \mathbf{r}
$$

- Which in our case is:

$$
Q_{i j}=M_{1}\left(r_{1, i} r_{1, j}-\frac{r_{1}^{2}}{3} \delta_{i j}\right)+M_{2}\left(r_{2, i} r_{2, j}-\frac{r_{2}^{2}}{3} \delta_{i j}\right)
$$

Newtonian Gravitational Waves

$$
\begin{aligned}
Q_{i j}=M_{1}\left(r_{1, i} r_{1, j}-\frac{r_{1}^{2}}{3} \delta_{i j}\right)+M_{2}\left(r_{2, i} r_{2, j}-\frac{r_{2}^{2}}{3} \delta_{i j}\right) \\
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{aligned}
$$

- For example:

$$
Q_{11}=M_{1}\left[r_{1}^{2} \cos ^{2} \phi-\frac{r_{1}^{2}}{3}\right]+M_{2}\left[r_{2}^{2} \cos ^{2} \phi-\frac{r_{2}^{2}}{3}\right]
$$

Newtonian Gravitational Waves

$$
\begin{array}{r}
Q_{i j}=M_{1}\left(r_{1, i} r_{1, j}-\frac{r_{1}^{2}}{3} \delta_{i j}\right)+M_{2}\left(r_{2, i} r_{2, j}-\frac{r_{2}^{2}}{3} \delta_{i j}\right) \\
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{array}
$$

- For example:

$$
Q_{11}=M_{1}\left[r_{1}^{2} \cos ^{2} \phi-\frac{r_{1}^{2}}{3}\right]+M_{2}\left[r_{2}^{2} \cos ^{2} \phi-\frac{r_{2}^{2}}{3}\right]
$$

- $M_{1}=M_{2} \Longrightarrow$

$$
Q_{11}=2 M_{1} r_{1}^{2}\left[\cos ^{2} \phi-\frac{1}{3}\right]=\frac{M r_{a}^{2}}{2} \frac{1}{4}\left[\frac{1}{3}+\cos (2 \phi)\right]
$$

Newtonian Gravitational Waves

$$
Q_{i j}=M_{1}\left(r_{1, i} r_{1, j}-\frac{r_{1}^{2}}{3} \delta_{i j}\right)+M_{2}\left(r_{2, i} r_{2, j}-\frac{r_{2}^{2}}{3} \delta_{i j}\right)
$$

$$
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0)
$$

$$
\mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
$$

- For example:

$$
Q_{11}=M_{1}\left[r_{1}^{2} \cos ^{2} \phi-\frac{r_{1}^{2}}{3}\right]+M_{2}\left[r_{2}^{2} \cos ^{2} \phi-\frac{r_{2}^{2}}{3}\right]
$$

- $M_{1}=M_{2} \Longrightarrow$

$$
Q_{11}=2 M_{1} r_{1}^{2}\left[\cos ^{2} \phi-\frac{1}{3}\right]=\frac{M r_{a}^{2}}{2} \frac{1}{4}\left[\frac{1}{3}+\cos (2 \phi)\right]
$$

- $M_{1}>M_{2} \Longrightarrow$
$Q_{11}=\frac{M r_{a}^{2}}{2} \mu\left[\frac{1}{3}+\cos (2 \phi)\right]$
Symmetric mass:

$$
\mu \equiv \frac{M_{1} M_{2}}{\left(M_{1}+M_{2}\right)^{2}}
$$

Newtonian Gravitational Waves

$$
\begin{array}{r}
Q_{i j}=M_{1}\left(r_{1, i} r_{1, j}-\frac{r_{1}^{2}}{3} \delta_{i j}\right)+M_{2}\left(r_{2, i} r_{2, j}-\frac{r_{2}^{2}}{3} \delta_{i j}\right) \\
\mathbf{r}_{1}=r_{1}(\cos \phi, \sin \phi, 0) \quad \mathbf{r}_{2}=-r_{2}(\cos \phi, \sin \phi, 0)
\end{array}
$$

- Quadrupole moment tensor for a binary BH system:
$Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\ \sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\ 0 & 0 & -2 / 3\end{array}\right)$

Newtonian Gravitational Waves

$$
V_{q}(r, t)=\frac{G}{r^{3}}\left\{\sum_{i, j} Q_{i j} \hat{o}_{i} \hat{o}_{j}-\frac{5}{2} Q_{33}\right\} \quad \begin{aligned}
& \hat{o}_{1}=\sin i \\
& \hat{o}_{2}=0 \\
& \hat{o}_{3}=\cos i
\end{aligned}
$$

- Only non-zero terms are Q_{110101} and $\mathrm{Q}_{33} \mathrm{O}_{3} \mathrm{O}_{3}$:

$$
V_{q}(r, t)=\frac{G}{3 r^{3}}\left\{Q_{11} \sin ^{2} i+Q_{33} \cos ^{2} i-\frac{5}{2} Q_{33}\right\}
$$

Newtonian Gravitational Waves

$$
V_{q}(r, t)=\frac{G}{r^{3}}\left\{\sum_{i, j} Q_{i j} \hat{o}_{i} \hat{o}_{j}-\frac{5}{2} Q_{33}\right\} \quad \begin{aligned}
& \hat{o}_{1}=\sin i \\
& \hat{o}_{2}=0 \\
& \hat{o}_{3}=\cos i
\end{aligned}
$$

- Only non-zero terms are $\mathrm{Q}_{11 \mathrm{O}_{1} \mathrm{O}_{1}}$ and $\mathrm{Q}_{33} \mathrm{O}_{3} \mathrm{O}_{3}$:

$$
V_{q}(r, t)=\frac{G}{3 r^{3}}\left\{Q_{11} \sin ^{2} i+Q_{33} \cos ^{2} i-\frac{5}{2} Q_{33}\right\}
$$

- For equal mass binary, end up with:

$$
V_{q}(r, t)=\frac{G M}{2 r^{3}} r_{1}^{2}\left\{1+\sin ^{2} i[1+\cos (2 \Omega t)]\right\}
$$

Newtonian Gravitational Waves

$$
V_{q}(r, t)=\frac{G}{r^{3}}\left\{\sum_{i, j} Q_{i j} \hat{o}_{i} \hat{o}_{j}-\frac{5}{2} Q_{33}\right\} \quad \begin{aligned}
& \hat{o}_{1}=\sin i \\
& \hat{o}_{2}=0 \\
& \hat{o}_{3}=\cos i
\end{aligned}
$$

- Only non-zero terms are $\mathrm{Q}_{11 \mathrm{O}_{1} \mathrm{O}_{1}}$ and $\mathrm{Q}_{33} \mathrm{O}_{3} \mathrm{O}_{3}$:

$$
V_{q}(r, t)=\frac{G}{3 r^{3}}\left\{Q_{11} \sin ^{2} i+Q_{33} \cos ^{2} i-\frac{5}{2} Q_{33}\right\}
$$

- For equal mass binary, end up with:

$$
V_{q}(r, t)=\frac{G M}{2 r^{3}} r_{1}^{2}\left\{1+\sin ^{2} i[1+\cos (2 \Omega t)]\right\}
$$

Newtonian Gravitational Waves

So even in Newtonian gravity we experience a changing gravitational force from a binary system due to a changing gravitational quadrupole moment with frequency 2Ω.

But of course there are many important differences:

- GWs are ripples in spacetime due to the changing quadrupole moment, not action-at-a-distance changes in gravitational field.
- Causality: GWs propagate at the speed of light.
- GWs are tiny, but much bigger than the ludicrously tiny effect of a changing Newtonian gravitational field we've explored so far.

GWs from the Einstein Equations

Einstein tensor
= spacetime curvature
= the metric independent of coordinate system

Stress-energy tensor
= mass density and pressure In SR, this is:

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
\rho_{0} c^{2} & 0 & 0 & 0 \\
0 & P_{x} & 0 & 0 \\
0 & 0 & P_{y} & 0 \\
0 & 0 & 0 & P_{z}
\end{array}\right)
$$

GWs from the Einstein Equations

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

Write metric as Minkowski + small perturbation:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu} \ll 1
$$

GWs from the Einstein Equations

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

Write metric as Minkowski + small perturbation:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu} \ll 1
$$

After a lot of maths, and the right choice of coordinates (gauge), the Einstein equations become:

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

GWs from the Einstein Equations

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

Write metric as Minkowski + small perturbation:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu} \ll 1
$$

After a lot of maths, and the right choice of coordinates (gauge), the Einstein equations become:

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

In empty space ($\mathrm{T}=0$), we therefore get:

$$
\nabla^{2} h_{\mu \nu}=\frac{1}{c^{2}} \frac{\partial^{2} h_{\mu \nu}}{\partial t^{2}}
$$

GWs from the Einstein Equations

$$
G_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

Write metric as Minkowski + small perturbation:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu} \ll 1
$$

After a lot of maths, and the right choice of coordinates (gauge), the Einstein equations become:

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

In empty space ($\mathrm{T}=0$), we therefore get:

$$
\nabla^{2} h_{\mu \nu}=\frac{1}{c^{2}} \frac{\partial^{2} h_{\mu \nu}}{\partial t^{2}}
$$

...which is a wave equation!
Ripples in the metric propagate outwards from a disturbance at the speed of light!

GWs from the Einstein Equations

$$
\nabla^{2} h_{\mu \nu}=\frac{1}{c^{2}} \frac{\partial^{2} h_{\mu \nu}}{\partial t^{2}}
$$

Plane wave

$$
h_{\mu \nu}=A_{\mu \nu} \mathrm{e}^{i k_{\alpha} x^{\alpha}}
$$

GWs from the Einstein Equations

$$
\nabla^{2} h_{\mu \nu}=\frac{1}{c^{2}} \frac{\partial^{2} h_{\mu \nu}}{\partial t^{2}}
$$

Plane wave solution:

$$
h_{\mu \nu}=A_{\mu \nu} \mathrm{e}^{i k_{\alpha} x^{\alpha}}
$$

Set up coordinate system so that wave propagates in z-direction:

$$
h_{\mu \nu}=A_{\mu \nu} \mathrm{e}^{i(k z-\omega t)}
$$

GWs from the Einstein Equations

$$
\nabla^{2} h_{\mu \nu}=\frac{1}{c^{2}} \frac{\partial^{2} h_{\mu \nu}}{\partial t^{2}}
$$

Plane wave solution:

$$
h_{\mu \nu}=A_{\mu \nu} \mathrm{e}^{\mathrm{i} k_{\alpha} x^{\alpha}}
$$

Set up coordinate system so that wave propagates in z-direction:

$$
h_{\mu \nu}=A_{\mu \nu} \mathrm{e}^{i(k z-\omega t)}
$$

Amplitude is linear sum of two modes:

$$
A_{\mu \nu}=h_{+}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+h_{x}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(Cartesian;

$$
0=t, 1=x \text {, }
$$

$$
2=y, 3=z)
$$

GW solutions

What do the waves actually look like?

GW solutions

What do the waves actually look like?

GW solutions

What do the waves actually look like?

- Proper length of $d x^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

GW solutions

What do the waves actually look like?

- Proper length of $d x^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

- Let's say the GW is only the plus mode:

$$
h_{\mu \nu} \propto \cos (\omega t)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(s_{x}\right)^{2}=\left[\eta_{11}+h_{11}\right] d x^{1} d x^{1}=L_{0}^{2}\left[1+h_{11}\right]
$$

GW solutions

What do the waves actually look like?

- Proper length of $\mathrm{dx}{ }^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

- Let's say the GW is only the plus mode:

$$
h_{\mu \nu} \propto \cos (\omega t)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(s_{x}\right)^{2}=\left[\eta_{11}+h_{11}\right] d x^{1} d x^{1}=L_{0}^{2}\left[1+h_{11}\right]
$$

GW solutions

What do the waves actually look like?

- Proper length of $d x^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

- Let's say the GW is only the plus mode:

$$
h_{\mu \nu} \propto \cos (\omega t)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
\left(s_{x}\right)^{2} & =\left[\eta_{11}+h_{11}\right] d x^{1} d x^{1}=L_{0}^{2}\left[1+h_{11}\right] \\
s_{x} & =L_{0}\left[1+h_{11}\right]^{1 / 2} \approx L_{0}\left[1+h_{11} / 2\right]
\end{aligned}
$$

- Fractional length change in x-direction:

$$
\left(\frac{\Delta L}{L}\right)_{x} \equiv \frac{s_{x}-L_{0}}{L_{0}} \approx \frac{h_{11}}{2} \propto \cos (\omega t)
$$

GW solutions

What do the waves actually look like?

- Proper length of $d x^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

- Let's say the GW is only the plus mode:
$h_{\mu \nu} \propto \cos (\omega t)\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \begin{aligned}\left(s_{x}\right)^{2} & =\left[\eta_{11}+h_{11}\right] d x^{1} d x^{1}=L_{0}^{2}\left[1+h_{11}\right] \\ s_{x} & =L_{0}\left[1+h_{11}\right]^{1 / 2} \approx L_{0}\left[1+h_{11} / 2\right]\end{aligned}$
- Fractional length change in x-direction:

$$
\left(\frac{\Delta L}{L}\right)_{x} \equiv \frac{s_{x}-L_{0}}{L_{0}} \approx \frac{h_{11}}{2} \propto \cos (\omega t)
$$

- Fractionaxl length change in y-direction:

$$
\left(\frac{\Delta L}{L}\right)_{y} \equiv \frac{s_{y}-L_{0}}{L_{0}} \approx \frac{h_{22}}{2} \propto-\cos (\omega t)
$$

GW solutions

What do the waves actually look like?

- Proper length of $d x^{\mu}$ is root of the 4D spacetime interval:

$$
\left(s_{x}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}
$$

- Let's say the GW is only the plus mode:
$h_{\mu \nu} \propto \cos (\omega t)\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \begin{array}{r}\left(s_{x}\right)^{2}=\left[\eta_{11}+h_{11}\right] d x^{1} d x^{1}=L_{0}^{2}\left[1+h_{11}\right] \\ s_{x}=L_{0}\left[1+h_{11}\right]^{1 / 2} \approx L_{0}\left[1+h_{11} / 2\right]\end{array}$
- Fractional length change in x-direction:

$$
\left(\frac{\Delta L}{L}\right)_{x} \equiv \frac{s_{x}-L_{0}}{L_{0}} \approx \frac{h_{11}}{2} \propto \cos (\omega t)
$$

- Fractionăl length change in y-direction:

$$
\left(\frac{\Delta L}{L}\right)_{y} \equiv \frac{s_{y}-L_{0}}{L_{0}} \approx \frac{h_{22}}{2} \propto-\cos (\omega t)
$$

- x and y oscillations are out of phase

$$
d x^{\mu}=\left(0, L_{0}, 0,0\right)
$$

GW solutions

$$
\left(\frac{\Delta L}{L}\right)_{x} \propto \cos (\omega t) \quad\left(\frac{\Delta L}{L}\right)_{y} \propto-\cos (\omega t)
$$

Or place test masses in a circle in the $x-y$ plane:

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:
 quadrupole moment

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:

Why $1 / r$?

Direct analogy to EM waves: energy carried in the wave is proportional to the amplitude squared (i.e. Poynting flux). Energy conservation => transmitted energy proportional to $1 / \mathrm{r}^{2}$.

GW solutions

We now want to know the amplitude of the GWs by solving the Einstein equations in the vicinity of the source ($\mathrm{T}>0$ at the source):

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h_{\mu \nu}=-16 \pi \frac{G}{c^{4}} T_{\mu \nu}
$$

After a lot of maths, end up with GW for observer distance r from source:

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

GWs carry energy away from the source. Energy carried away from source per unit time (GW luminosity) is:

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle
$$

Averaging is over characteristic timescale (one orbital period for GWs from a BBH)

GWs from a BBH system
 $$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

Differentiate twice:

$$
\ddot{Q}_{i j}=2 \mu M r_{a}^{2} \Omega^{2}\left(\begin{array}{ccc}
-\cos (2 \Omega t) & -\sin (2 \Omega t) & 0 \\
-\sin (2 \Omega t) & \cos (2 \Omega t) & 0 \\
0 & 0 & 0
\end{array}\right)
$$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

Differentiate twice:

$$
\begin{aligned}
\ddot{Q}_{i j} & =2 \mu M r_{a}^{2} \Omega^{2}\left(\begin{array}{ccc}
-\cos (2 \Omega t) & -\sin (2 \Omega t) & 0 \\
-\sin (2 \Omega t) & \cos (2 \Omega t) & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow h_{i j} & =h_{0}\left(\begin{array}{ccc}
-\cos [2 \Omega(t-r / c)] & -\sin [2 \Omega(t-r / c)] & 0 \\
-\sin [2 \Omega(t-r / c)] & \cos [2 \Omega(t-r / c)] & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Where:
$h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

Differentiate twice:

$$
\begin{aligned}
\ddot{Q}_{i j} & =2 \mu M r_{a}^{2} \Omega^{2}\left(\begin{array}{ccc}
-\cos (2 \Omega t) & -\sin (2 \Omega t) & 0 \\
-\sin (2 \Omega t) & \cos (2 \Omega t) & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow h_{i j} & =h_{0}\left(\begin{array}{ccc}
-\cos [2 \Omega(t-r / c)] & -\sin [2 \Omega(t-r / c)] & 0 \\
-\sin [2 \Omega(t-r / c)] & \cos [2 \Omega(t-r / c)] & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Where:
$h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=4 \frac{G M}{c^{4}} \frac{\mu}{r} \frac{r_{g}}{r_{a}}$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

Differentiate twice:

$$
\begin{aligned}
\ddot{Q}_{i j} & =2 \mu M r_{a}^{2} \Omega^{2}\left(\begin{array}{ccc}
-\cos (2 \Omega t) & -\sin (2 \Omega t) & 0 \\
-\sin (2 \Omega t) & \cos (2 \Omega t) & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow h_{i j} & =h_{0}\left(\begin{array}{ccc}
-\cos [2 \Omega(t-r / c)] & -\sin [2 \Omega(t-r / c)] & 0 \\
-\sin [2 \Omega(t-r / c)] & \cos [2 \Omega(t-r / c)] & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Where:
$h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=4 \frac{G M}{c^{4}} \frac{\mu}{r} \frac{r_{g}}{r_{a}}$

$$
M=20 M_{\odot} ; \mu=1 / 4 ; r=40 \mathrm{Mpc} ; r_{a}=6 r_{g}
$$

GWs from a BBH system

$$
h_{i j}(r, t)=\frac{2}{r} \frac{G}{c^{4}} \ddot{Q}_{i j}(t-r / c)
$$

What is the amplitude of GWs from a BBH system? Recall:

$$
Q_{i j}=\frac{1}{2} \mu M r_{a}^{2}\left(\begin{array}{ccc}
1 / 3+\cos (2 \phi) & \sin (2 \phi) & 0 \\
\sin (2 \phi) & 1 / 3-\cos (2 \phi) & 0 \\
0 & 0 & -2 / 3
\end{array}\right)
$$

Differentiate twice:

$$
\begin{aligned}
\ddot{Q}_{i j} & =2 \mu M r_{a}^{2} \Omega^{2}\left(\begin{array}{ccc}
-\cos (2 \Omega t) & -\sin (2 \Omega t) & 0 \\
-\sin (2 \Omega t) & \cos (2 \Omega t) & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow h_{i j} & =h_{0}\left(\begin{array}{ccc}
-\cos [2 \Omega(t-r / c)] & -\sin [2 \Omega(t-r / c)] & 0 \\
-\sin [2 \Omega(t-r / c)] & \cos [2 \Omega(t-r / c)] & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=4 \frac{G M}{c^{4}} \frac{\mu}{r} \frac{r_{g}}{r_{a}} \\
& M=20 M_{\odot} ; \mu=1 / 4 ; r=40 \mathrm{Mpc} ; r_{a}=6 r_{g}
\end{aligned}
$$

$\Longrightarrow h_{0} \approx 4 \times 10^{-21}$
TINY!

GWs from a BBH system

What about the GW luminosity?

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

GWs from a BBH system

What about the GW luminosity?

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

$$
\begin{aligned}
& M_{1}=M_{2} \Longrightarrow \\
& L_{G W}=\frac{2}{5} \frac{c^{5}}{G}\left(\frac{r_{g}}{r_{a}}\right)^{5}
\end{aligned}
$$

GWs from a BBH system

What about the GW luminosity?

$$
\begin{aligned}
& L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}} \\
& M_{1}=M_{2} \Longrightarrow \frac{2}{5} \frac{c^{5}}{G}\left(\frac{r_{g}}{r_{a}}\right)^{5} \\
&
\end{aligned}
$$

GWs from a BBH system

What about the GW luminosity?

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

$$
M_{1}=M_{2} \Longrightarrow
$$

$$
L_{G W}=\frac{2}{5} \frac{c^{5}}{G}\left(\frac{r_{g}}{r_{a}}\right)^{5}
$$

HUGE! Why?

- Amplitude reduces with distance, this is luminosity lost by the system.
- Bending spacetime takes a lot of energy!

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\frac{d r_{a}}{d t}=\frac{d r_{a}}{d E} \frac{d E}{d t}=\frac{d r_{a}}{d E} L_{G W}
$$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\begin{aligned}
\frac{d r_{a}}{d t}=\frac{d r_{a}}{d E} \frac{d E}{d t}=\frac{d r_{a}}{d E} L_{G W} & \\
E=\frac{1}{2} \frac{G M_{1} M_{2}}{r_{a}} & \Longrightarrow \frac{d r_{a}}{d t}=-\frac{2 r_{a}^{2}}{G M_{1} M_{2}} L_{G W}
\end{aligned}
$$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\begin{gathered}
\frac{d r_{a}}{d t}=\frac{d r_{a}}{d E} \frac{d E}{d t}=\frac{d r_{a}}{d E} L_{G W} \\
E=\frac{1}{2} \frac{G M_{1} M_{2}}{r_{a}} \quad \Longrightarrow \frac{d r_{a}}{d t}=-\frac{2 r_{a}^{2}}{G M_{1} M_{2}} L_{G W} \\
\Longrightarrow \frac{d r_{a}}{d t}=-\frac{64 G^{3}}{5 c^{5}} \frac{M_{1} M_{2} M}{r_{a}^{3}}
\end{gathered}
$$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\frac{d r_{a}}{d t}=-\frac{64 G^{3}}{5 c^{5}} \frac{M_{1} M_{2} M}{r_{a}^{3}}
$$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\frac{d r_{a}}{d t}=-\frac{64 G^{3}}{5 c^{5}} \frac{M_{1} M_{2} M}{r_{a}^{3}}
$$

Rate of change of orbital period P :

$$
\dot{P} \equiv \frac{d P}{d t}=\frac{d P}{d r_{a}} \frac{d r_{a}}{d t}=\frac{3}{2} \frac{2 \pi}{(G M)^{1 / 2}} r_{a}^{1 / 2} \frac{d r_{a}}{d t}
$$

Kepler's law
$P^{2}=\frac{(2 \pi)^{2} r_{a}^{3}}{G M}$

Binary evolution

GWs take energy out of the system, therefore binary orbit (and eccentricity) shrinks!

$$
L_{G W}=\frac{G^{4}}{5 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{G^{4}}{5 c^{5}} \frac{\left(M_{1} M_{2}\right)^{2} M}{r_{a}^{5}}
$$

Rate of change of separation:

$$
\frac{d r_{a}}{d t}=-\frac{64 G^{3}}{5 c^{5}} \frac{M_{1} M_{2} M}{r_{a}^{3}}
$$

Rate of change of orbital period P :

$$
\dot{P} \equiv \frac{d P}{d t}=\frac{d P}{d r_{a}} \frac{d r_{a}}{d t}=\frac{3}{2} \frac{2 \pi}{(G M)^{1 / 2}} r_{a}^{1 / 2} \frac{d r_{a}}{d t}
$$

Eliminate r_{a} using Kepler's law:

$$
\begin{aligned}
& \text { Kepler's law } \\
& P^{2}=\frac{(2 \pi)^{2} r_{a}^{3}}{G M}
\end{aligned}
$$

Chirp mass

$$
\dot{P}=-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3}
$$

$$
\mathscr{M}=\left(\frac{M_{1}^{3} M_{2}^{3}}{M}\right)^{1 / 5}
$$

Binary evolution

Hulse-Taylor binary:

- Binary neutron star system, one of the NSs is a pulsar, discovered in 1974.
- Doppler shifts cause small variations in pulse period that can be used to accurately measure both NS masses (and orbital period).
- Therefore know exactly how the orbital period should evolve due to GWs.

Binary evolution

- Periastron should come earlier and earlier each orbit compared with if the orbital period were constant.
- Can therefore measure the build up of orbital decay over many orbits.

Binary evolution

- Periastron should come earlier and earlier each orbit compared with if the orbital period were constant.
- Can therefore measure the build up of orbital decay over many orbits.

Binary evolution

- Periastron should come earlier and earlier each orbit compared with if the orbital period were constant.
- Can therefore measure the build up of orbital decay over many orbits.
The Nobel Prize in Physics 1993

Photo from the Nobel Foundation Russell A. Hulse Prize share: 1/2

Photo from the Nobel Foundation Joseph H. Taylor Jr. Prize share: $1 / 2$

GW waveform

- GW frequency: $f=2 / P$

$$
\dot{P}=-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3}
$$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
\dot{P} & =-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
\therefore \dot{f} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3}
\end{aligned}
$$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
\dot{P} & =-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
\therefore \dot{f} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3} \\
f(t) & =\left[f_{0}^{-8 / 3}-\frac{256}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} \quad f_{0}=f(t=0)
\end{aligned}
$$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
\dot{P} & =-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
\therefore \dot{f} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3} \\
f(t) & =\left[f_{0}^{-8 / 3}-\frac{256}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} \quad f_{0}=f(t=0)
\end{aligned}
$$

- Amplitude: $h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
& \dot{P}=-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
& \therefore \dot{f}=\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3} \\
& f(t)=\left[f_{0}^{-8 / 3}-\frac{256}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} \quad f_{0}=f(t=0) \\
& \text { - Amplitude: } \quad h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=\frac{4 \pi^{2 / 3}(G \mathscr{M})^{5 / 3}}{c^{4} r} f^{2 / 3}
\end{aligned}
$$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
\dot{P} & =-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
\therefore \dot{f} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3} \\
f(t) & =\left[f_{0}^{-8 / 3}-\frac{256}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} \quad f_{0}=f(t=0)
\end{aligned}
$$

- Amplitude: $h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=\frac{4 \pi^{2 / 3}(G \mathscr{M})^{5 / 3}}{c^{4} r} f^{2 / 3}$
- Waveform: $h(t)=h_{0}(t) \cos \varphi(t)$

GW waveform

- GW frequency: $f=2 / P$

$$
\begin{aligned}
\dot{P} & =-\frac{96}{5}(2 \pi)^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} P^{-5 / 3} \\
\therefore \dot{f} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} f^{11 / 3} \\
f(t) & =\left[f_{0}^{-8 / 3}-\frac{256}{5} \pi^{8 / 3}\left(\frac{G \mathscr{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} \quad f_{0}=f(t=0)
\end{aligned}
$$

- Amplitude: $h_{0}=4 \frac{G M}{c^{4}} \mu \frac{\left(r_{a} \Omega\right)^{2}}{r}=\frac{4 \pi^{2 / 3}(G \mathscr{M})^{5 / 3}}{c^{4} r} f^{2 / 3}$
- Waveform: $\quad h(t)=h_{0}(t) \cos \varphi(t)$
- Phase: $\quad \varphi(t)=\varphi_{0}+\int_{t^{\prime}=0}^{t^{\prime}=t} 2 \pi f\left(t^{\prime}\right) t^{\prime} d t^{\prime}=2 \pi\left(f t+\frac{1}{2} \dot{f} t^{2}\right)+\varphi_{0}$

GW waveform

$$
h(t)=h_{0}(t) \cos \left(2 \pi f t+\pi \dot{f t}^{2}\right)
$$

Numerical Relativity

Figure 5.3: (Left) Plot of the binary black hole waveform as a function of time, as well as the black hole separation and relative velocity, all as calculated from our slow-motion approximation to the linearized theory of general relativity. (Right) Computer simulations solving Einstein's equations numerically for the waveform of coalescing binary black holes [9]. Note the strength of the velocities, especially right before the merger takes place (as well as the shape of the waveform) - here it becomes clear that our approximation is beginning to break down.

LIGO/Virgo

LIGO/Virgo

Michelson interferometer

LIGO/Virgo

Michelson interferometer
As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams.

Time

LIGO/Virgo

Michelson interferometer
As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams.

Time

LIGO/Virgo

Michelson interferometer

As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams. destructive interference between the beams.

LIGO/Virgo

Michelson interferometer
As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams.

Time

LIGO/Virgo

Michelson interferometer

As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams.

Detector

Time

LIGO/Virgo

Michelson interferometer
As mirrors move, detected flux oscillates due to constructive and destructive interference between the two beams.

Time

LIGO/Virgo

Different detectors see different signals because:

- Path length difference means GWs arrive at one detector slightly after another detector.
- Detectors have different orientations:

$$
\left(s_{\mathrm{arm}}\right)^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \quad d x^{\mu}=\left(0, \Delta x_{\mathrm{arm}}, \Delta y_{\mathrm{arm}}, \Delta z_{\mathrm{arm}}\right)
$$

Both differences can be used for verification and localisation.

LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!

LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$
- No of photons in interval (1/f): $\quad N=L(1 / f) /(h \nu)$

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$
- No of photons in interval (1/f): $\quad N=L(1 / f) /(h \nu)$
- Poisson counting error: $d N=\sqrt{N}$

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$
- No of photons in interval (1/f): $\quad N=L(1 / f) /(h \nu)$
- Poisson counting error: $d N=\sqrt{N}$
- Fractional error: $d N / N=N^{-1 / 2} \propto f^{1 / 2}$

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$
- No of photons in interval (1/f): $\quad N=L(1 / f) /(h \nu)$
- Poisson counting error: $d N=\sqrt{N}$
- Fractional error: $d N / N=N^{-1 / 2} \propto f^{1 / 2}$

Could just crank up the laser power, L?

LIGO/Virgo

Poisson noise

- Need to accurately measure flux in time interval < $1 / \mathrm{f}$
- No of photons in interval (1/f): $\quad N=L(1 / f) /(h \nu)$
- Poisson counting error: $d N=\sqrt{N}$
- Fractional error: $d N / N=N^{-1 / 2} \propto f^{1 / 2}$

Could just crank up the laser power, L?
...but this increases radiation pressure, which wobbles the mirrors at lower frequencies!

LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!

Laser power optimised to be most sensitive to GW f of merging BHs

LIGO/Virgo

The first GW event

LIGO/Virgo

The first GW event

14th September 2015

$$
M_{1}=36_{-4}^{+5} M_{\odot} ; \quad M_{2}=29_{-4}^{+4} M_{\odot} ; \quad r=410_{-180}^{+160} \mathrm{Mpc}
$$

$$
M_{\text {product }}=62_{-4}^{+4} M_{\odot}
$$

... 3 Msun of rest mass energy radiated away!

LIGO/Virgo

The first GW event

LIGO/Virgo

The first GW event

LIGO/Virgo Results after observing run 3

Masses in the Stellar Graveyard
 in Solar Masses

- Mainly BBHs, two BNSs and one of them had EM counterpart!
- GW BHs heavier than XRB BHs. Why? Different formation channels (LMXRBs will not become GW sources), BBH's progenitors formed a long time ago so lower metallicity.

