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Gravitational Waves

“Gravitational Wave Radiation by Binary Black Holes” by Ryan Rubenzahl

(https://rrubenza.github.io/project/p413_gws/RR_PHY413_GW_Paper.pdf)

https://rrubenza.github.io/project/p413_gws/RR_PHY413_GW_Paper.pdf


Newtonian Gravitational Waves
• GWs are obviously an inherently relativistic phenomenon.

• BUT we can learn a lot by thinking about the Newtonian gravitational field 

we feel from a binary BH system.

• The gravitational field changes ever-so-slightly with binary orbital phase.

• Similarities to GWs: the changes in gravitational potential depend on the 

quadrupole moment, and the frequency of the changes is twice the 
orbital phase.


• The latter is obvious: we feel the same gravitational force when BH1 is on 
the left and BH2 is on the right as we do when BH1 is on the right and 
BH2 is on the left. M1

M2ϕ(t) = Ωt
Orbital phase:



Newtonian Gravitational Waves

M1

M2

ϕ(t) = Ωt

x

y

z

• Binary system in x-y plane centred on CoM.

• Phase of BH1 is ϕ, phase of BH2 is ϕ+π.


• Total mass:                        ; seperation: M = M1 + M2 ra = r1 + r2

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

r1
r2
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M1

M2

ô
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ϕ(t) = Ωt
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• Binary system in x-y plane centred on CoM.

• Phase of BH1 is ϕ, phase of BH2 is ϕ+π.


• Total mass:                        ; seperation: 

• Observer a distance r from the CoM along vector: 

• Vector pointing from BH1 to observer:

• Vector pointing from BH2 to observer: 

M = M1 + M2 ra = r1 + r2
ô = (sin i,0, cos i)

ζ1 = − r1 + rô
ζ2 = − r2 + rô

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

r1
r2
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ϕ(t) = Ωt
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• Binary system in x-y plane centred on CoM.

• Phase of BH1 is ϕ, phase of BH2 is ϕ+π.


• Total mass:                        ; seperation: 

• Observer a distance r from the CoM along vector: 

• Vector pointing from BH1 to observer:

• Vector pointing from BH2 to observer: 

• Gravitational force on observer (mass m) from BH1 in direction of CoM:

M = M1 + M2 ra = r1 + r2
ô = (sin i,0, cos i)

ζ1 = − r1 + rô
ζ2 = − r2 + rô

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

F1 =
GM1m

ζ2
1

ζ1 ⋅ ô
ζ1

r1
r2
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ϕ(t) = Ωt
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• Binary system in x-y plane centred on CoM.

• Phase of BH1 is ϕ, phase of BH2 is ϕ+π.


• Total mass:                        ; seperation: 

• Observer a distance r from the CoM along vector: 

• Vector pointing from BH1 to observer:

• Vector pointing from BH2 to observer: 

• Gravitational force on observer (mass m) from BH1 in direction of CoM:


• From BH2:

M = M1 + M2 ra = r1 + r2
ô = (sin i,0, cos i)

ζ1 = − r1 + rô
ζ2 = − r2 + rô

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

F1 =
GM1m

ζ2
1

ζ1 ⋅ ô
ζ1

F2 =
GM2m

ζ2
2

ζ2 ⋅ ô
ζ2 r1

r2
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• Total gravitational force in direction of CoM:

ô = (sin i,0, cos i)ζ1 = − r1 + rô ζ2 = − r2 + rô

F =
GM1m (r − r1 cos ϕ sin i)

(r2 + r2
1 − 2r1r cos ϕ sin i)3/2

+
GM2m (r + r2 cos ϕ sin i)

(r2 + r2
2 + 2r2r cos ϕ sin i)3/2

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

M1

M2

ô

i

x

y

z

ϕ(t) = Ωt

r1
r2



Newtonian Gravitational Waves

• Total gravitational force in direction of CoM:


•                     Binomial expansion:

ô = (sin i,0, cos i)ζ1 = − r1 + rô ζ2 = − r2 + rô

F =
GM1m (r − r1 cos ϕ sin i)

(r2 + r2
1 − 2r1r cos ϕ sin i)3/2

+
GM2m (r + r2 cos ϕ sin i)

(r2 + r2
2 + 2r2r cos ϕ sin i)3/2

r ≫ ra ⟹

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

M1

M2

ô

i

x

y

z

ϕ(t) = Ωt

r1
r2
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• Total gravitational force in direction of CoM:


•                     Binomial expansion:

ô = (sin i,0, cos i)ζ1 = − r1 + rô ζ2 = − r2 + rô

F =
GM1m (r − r1 cos ϕ sin i)

(r2 + r2
1 − 2r1r cos ϕ sin i)3/2

+
GM2m (r + r2 cos ϕ sin i)

(r2 + r2
2 + 2r2r cos ϕ sin i)3/2

r ≫ ra ⟹

F ≈
GM1m

r3
(r − r1 cos ϕ sin i)[1 −

3
2 ( r1

r )
2

+ 3 ( r1

r ) cos ϕ sin i]
+

GM2m
r3

(r + r2 cos ϕ sin i)[1 −
3
2 ( r2

r )
2

− 3 ( r2

r ) cos ϕ sin i]

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)
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F ≈
GM1m

r3
(r − r1 cos ϕ sin i)[1 −

3
2 ( r1

r )
2

+ 3 ( r1

r ) cos ϕ sin i]
+

GM1m
r3

(r + r1 cos ϕ sin i)[1 −
3
2 ( r1

r )
2

− 3 ( r1

r ) cos ϕ sin i]

• Simplify to equal mass binary
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F ≈
GM1m

r3
(r − r1 cos ϕ sin i)[1 −

3
2 ( r1

r )
2

+ 3 ( r1

r ) cos ϕ sin i]
+

GM1m
r3

(r + r1 cos ϕ sin i)[1 −
3
2 ( r1

r )
2

− 3 ( r1

r ) cos ϕ sin i]

• Simplify to equal mass binary

F ≈
GM1m

r3 [2r − 3
r2
1

r
− 6

r2
1

r
cos2 ϕ sin2 i]
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F ≈
GM1m

r3
(r − r1 cos ϕ sin i)[1 −

3
2 ( r1

r )
2

+ 3 ( r1

r ) cos ϕ sin i]
+

GM1m
r3

(r + r1 cos ϕ sin i)[1 −
3
2 ( r1

r )
2

− 3 ( r1

r ) cos ϕ sin i]

• Simplify to equal mass binary

F ≈
GM1m

r3 [2r − 3
r2
1

r
− 6

r2
1

r
cos2 ϕ sin2 i]

F ≈
GMm

r2
−

3
2

GMm
r4

r2
1 [1 + sin2 i (1 + cos(2Ωt))]
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F ≈
GM1m

r3
(r − r1 cos ϕ sin i)[1 −

3
2 ( r1

r )
2

+ 3 ( r1

r ) cos ϕ sin i]
+

GM1m
r3

(r + r1 cos ϕ sin i)[1 −
3
2 ( r1

r )
2

− 3 ( r1

r ) cos ϕ sin i]

• Simplify to equal mass binary

F ≈
GM1m

r3 [2r − 3
r2
1

r
− 6

r2
1

r
cos2 ϕ sin2 i]

F ≈
GMm

r2
−

3
2

GMm
r4

r2
1 [1 + sin2 i (1 + cos(2Ωt))]

Monopole 
term

Quadrupole 
term



Newtonian Gravitational Waves
• Express in terms of gravitational potential:

V(r, t) ≈ −
GM

r
+

GM
2r3

r2
1 [1 + sin2 i (1 + cos(2ωt))]



Newtonian Gravitational Waves
• Express in terms of gravitational potential:


• Can write quadrupole potential in terms of the quadrupole moment tensor:

V(r, t) ≈ −
GM

r
+

GM
2r3

r2
1 [1 + sin2 i (1 + cos(2ωt))]

Vq(r, t) =
G
r3 ∑

i,j

Qij ̂oi ̂oj −
5
2

Q33

̂o1 = sin i
̂o2 = 0
̂o3 = cos i



Newtonian Gravitational Waves
• Express in terms of gravitational potential:


• Can write quadrupole potential in terms of the quadrupole moment tensor:


• Where:


• Which in our case is:

V(r, t) ≈ −
GM

r
+

GM
2r3

r2
1 [1 + sin2 i (1 + cos(2ωt))]

Vq(r, t) =
G
r3 ∑

i,j

Qij ̂oi ̂oj −
5
2

Q33

Qij = ∫ ρ(r) (rirj −
1
3

|r |2 δij) d3r

Qij = M1 (r1,ir1,j −
r2
1

3
δij) + M2 (r2,ir2,j −

r2
2

3
δij)

̂o1 = sin i
̂o2 = 0
̂o3 = cos i



• For example:

Newtonian Gravitational Waves
Qij = M1 (r1,ir1,j −

r2
1

3
δij) + M2 (r2,ir2,j −

r2
2

3
δij)

Q11 = M1 [r2
1 cos2 ϕ −

r2
1

3 ] + M2 [r2
2 cos2 ϕ −

r2
2

3 ]

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)



• For example:


• .

Newtonian Gravitational Waves
Qij = M1 (r1,ir1,j −

r2
1

3
δij) + M2 (r2,ir2,j −

r2
2

3
δij)

Q11 = M1 [r2
1 cos2 ϕ −

r2
1

3 ] + M2 [r2
2 cos2 ϕ −

r2
2

3 ]

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

M1 = M2 ⟹

Q11 = 2M1r2
1 [cos2 ϕ −

1
3 ] =

Mr2
a

2
1
4 [ 1

3
+ cos(2ϕ)]



• For example:


• .


• .

Newtonian Gravitational Waves
Qij = M1 (r1,ir1,j −

r2
1

3
δij) + M2 (r2,ir2,j −

r2
2

3
δij)

Q11 = M1 [r2
1 cos2 ϕ −

r2
1

3 ] + M2 [r2
2 cos2 ϕ −

r2
2

3 ]

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

M1 = M2 ⟹

Q11 = 2M1r2
1 [cos2 ϕ −

1
3 ] =

Mr2
a

2
1
4 [ 1

3
+ cos(2ϕ)]

M1 > M2 ⟹

Q11 =
Mr2

a

2
μ [ 1

3
+ cos(2ϕ)] μ ≡

M1M2

(M1 + M2)2

Symmetric mass:



Newtonian Gravitational Waves
Qij = M1 (r1,ir1,j −

r2
1

3
δij) + M2 (r2,ir2,j −

r2
2

3
δij)

r1 = r1(cos ϕ, sin ϕ,0) r2 = − r2(cos ϕ, sin ϕ,0)

Qij =
1
2

μMr2
a

1/3 + cos(2ϕ) sin(2ϕ) 0
sin(2ϕ) 1/3 − cos(2ϕ) 0

0 0 −2/3

• Quadrupole moment tensor for a binary BH system:
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• Only non-zero terms are Q11o1o1 and Q33o3o3:

Vq(r, t) =
G

3r3 {Q11 sin2 i + Q33 cos2 i −
5
2

Q33}

Vq(r, t) =
G
r3 ∑

i,j

Qij ̂oi ̂oj −
5
2

Q33

̂o1 = sin i
̂o2 = 0
̂o3 = cos i
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• Only non-zero terms are Q11o1o1 and Q33o3o3:


• For equal mass binary, end up with:


Vq(r, t) =
G

3r3 {Q11 sin2 i + Q33 cos2 i −
5
2

Q33}

Vq(r, t) =
GM
2r3

r2
1 {1 + sin2 i[1 + cos(2Ωt)]}

Vq(r, t) =
G
r3 ∑

i,j

Qij ̂oi ̂oj −
5
2

Q33

̂o1 = sin i
̂o2 = 0
̂o3 = cos i



Newtonian Gravitational Waves

• Only non-zero terms are Q11o1o1 and Q33o3o3:


• For equal mass binary, end up with:


Vq(r, t) =
G

3r3 {Q11 sin2 i + Q33 cos2 i −
5
2

Q33}

Vq(r, t) =
GM
2r3

r2
1 {1 + sin2 i[1 + cos(2Ωt)]}

Vq(r, t) =
G
r3 ∑

i,j

Qij ̂oi ̂oj −
5
2

Q33

̂o1 = sin i
̂o2 = 0
̂o3 = cos i

✓



Newtonian Gravitational Waves
So even in Newtonian gravity we experience a changing gravitational 
force from a binary system due to a changing gravitational 
quadrupole moment with frequency 2Ω.


But of course there are many important differences:


• GWs are ripples in spacetime due to the changing quadrupole 
moment, not action-at-a-distance changes in gravitational field.


• Causality: GWs propagate at the speed of light.


• GWs are tiny, but much bigger than the ludicrously tiny effect of a 
changing Newtonian gravitational field we’ve explored so far.



GWs from the Einstein Equations

Gμν = 8π
G
c4

Tμν

Einstein tensor 
= spacetime curvature

= the metric independent of 
coordinate system

Stress-energy tensor 
= mass density and pressure

In SR, this is:

Tμν =

ρ0c2 0 0 0
0 Px 0 0
0 0 Py 0
0 0 0 Pz



GWs from the Einstein Equations

Gμν = 8π
G
c4

Tμν

Write metric as Minkowski + small perturbation:


gμν = ημν + hμν hμν ≪ 1



GWs from the Einstein Equations

Gμν = 8π
G
c4

Tμν

Write metric as Minkowski + small perturbation:


After a lot of maths, and the right choice of coordinates (gauge), the Einstein 
equations become:


gμν = ημν + hμν hμν ≪ 1

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν



GWs from the Einstein Equations

Gμν = 8π
G
c4

Tμν

Write metric as Minkowski + small perturbation:


After a lot of maths, and the right choice of coordinates (gauge), the Einstein 
equations become:


In empty space (T=0), we therefore get:

gμν = ημν + hμν hμν ≪ 1

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν

∇2hμν =
1
c2

∂2hμν

∂t2



GWs from the Einstein Equations

Gμν = 8π
G
c4

Tμν

Write metric as Minkowski + small perturbation:


After a lot of maths, and the right choice of coordinates (gauge), the Einstein 
equations become:


In empty space (T=0), we therefore get:

gμν = ημν + hμν hμν ≪ 1

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν

∇2hμν =
1
c2

∂2hμν

∂t2

…which is a wave equation!

Ripples in the metric propagate outwards 
from a disturbance at the speed of light!



GWs from the Einstein Equations
∇2hμν =

1
c2

∂2hμν

∂t2
Plane wave 
solution:

hμν = Aμνeikαxα



GWs from the Einstein Equations
∇2hμν =

1
c2

∂2hμν

∂t2
Plane wave 
solution:

hμν = Aμνeikαxα

Set up coordinate system so that wave propagates in z-direction:

hμν = Aμνei(kz−ωt)



GWs from the Einstein Equations
∇2hμν =

1
c2

∂2hμν

∂t2
Plane wave 
solution:

hμν = Aμνeikαxα

Set up coordinate system so that wave propagates in z-direction:

hμν = Aμνei(kz−ωt)

Amplitude is linear sum of two modes:

Aμν = h+

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+ hx

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

(Cartesian; 
0=t, 1=x, 
2=y, 3=z)

Plus mode Cross mode



GW solutions
What do the waves actually look like?
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What do the waves actually look like?

y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:

y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:


• Let’s say the GW is only the plus mode:


y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν

hμν ∝ cos(ωt)

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

(sx)2 = [η11 + h11]dx1dx1 = L2
0 [1 + h11]



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:


• Let’s say the GW is only the plus mode:


y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν

hμν ∝ cos(ωt)

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

sx = L0 [1 + h11]1/2 ≈ L0 [1 + h11/2]
(sx)2 = [η11 + h11]dx1dx1 = L2

0 [1 + h11]



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:


• Let’s say the GW is only the plus mode:


• Fractional length change in x-direction: y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν

hμν ∝ cos(ωt)

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

( ΔL
L )

x
≡

sx − L0

L0
≈

h11

2
∝ cos(ωt)

sx = L0 [1 + h11]1/2 ≈ L0 [1 + h11/2]
(sx)2 = [η11 + h11]dx1dx1 = L2

0 [1 + h11]



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:


• Let’s say the GW is only the plus mode:


• Fractional length change in x-direction:


• Fractional length change in y-direction:

y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν

hμν ∝ cos(ωt)

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

( ΔL
L )

x
≡

sx − L0

L0
≈

h11

2
∝ cos(ωt)

( ΔL
L )

y
≡

sy − L0

L0
≈

h22

2
∝ − cos(ωt)

sx = L0 [1 + h11]1/2 ≈ L0 [1 + h11/2]
(sx)2 = [η11 + h11]dx1dx1 = L2

0 [1 + h11]



GW solutions
What do the waves actually look like?

• Proper length of dxμ is root of the 4D spacetime interval:


• Let’s say the GW is only the plus mode:


• Fractional length change in x-direction:


• Fractional length change in y-direction:


• x and y oscillations are out of phase

y

xdy
μ

=
(0

,0
,L

0,0
)

dxμ = (0,L0,0,0)

(sx)2 = gμνdxμdxν = [ημν + hμν] dxμdxν

hμν ∝ cos(ωt)

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

( ΔL
L )

x
≡

sx − L0

L0
≈

h11

2
∝ cos(ωt)

( ΔL
L )

y
≡

sy − L0

L0
≈

h22

2
∝ − cos(ωt)

sx = L0 [1 + h11]1/2 ≈ L0 [1 + h11/2]
(sx)2 = [η11 + h11]dx1dx1 = L2

0 [1 + h11]



GW solutions
( ΔL

L )
x

∝ cos(ωt) ( ΔL
L )

y
∝ − cos(ωt)

Or place test masses in a circle in the x-y plane:



GW solutions
We now want to know the amplitude of the GWs by solving the Einstein 
equations in the vicinity of the source (T>0 at the source):

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν

After a lot of maths, end up with GW for observer distance r from source:

hij(r, t) =
2
r

G
c4

··Qij(t − r/c)
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2
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G
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Roman letters => 

runs from 1-3
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G
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G
c4

··Qij(t − r/c)

2nd time derivative of 
quadrupole moment

Roman letters => 
runs from 1-3
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We now want to know the amplitude of the GWs by solving the Einstein 
equations in the vicinity of the source (T>0 at the source):

(∇2 −
1
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∂t2 ) hμν = − 16π
G
c4
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After a lot of maths, end up with GW for observer distance r from source:

hij(r, t) =
2
r

G
c4

··Qij(t − r/c)

Propagates at 
speed of light2nd time derivative of 

quadrupole moment

Roman letters => 
runs from 1-3



GW solutions
We now want to know the amplitude of the GWs by solving the Einstein 
equations in the vicinity of the source (T>0 at the source):

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν

After a lot of maths, end up with GW for observer distance r from source:

hij(r, t) =
2
r

G
c4

··Qij(t − r/c)

Propagates at 
speed of light2nd time derivative of 

quadrupole moment

Roman letters => 
runs from 1-3

Why 1/r? 
Direct analogy to EM waves: energy carried in the wave is proportional to the 
amplitude squared (i.e. Poynting flux). Energy conservation => transmitted 
energy proportional to 1/r2.



GW solutions
We now want to know the amplitude of the GWs by solving the Einstein 
equations in the vicinity of the source (T>0 at the source):

(∇2 −
1
c2

∂2

∂t2 ) hμν = − 16π
G
c4

Tμν

After a lot of maths, end up with GW for observer distance r from source:

hij(r, t) =
2
r

G
c4

··Qij(t − r/c)

LGW =
G4

5c5
⟨ ···Qij

···Qij⟩

Averaging is over characteristic timescale 
(one orbital period for GWs from a BBH)

GWs carry energy away from the source. Energy carried away from source per 
unit time (GW luminosity) is:
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hij(r, t) =
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Qij =
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μMr2
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1/3 + cos(2ϕ) sin(2ϕ) 0
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What is the amplitude of GWs from a BBH system? Recall:

··Qij = 2μMr2
aΩ2

−cos(2Ωt) −sin(2Ωt) 0
−sin(2Ωt) cos(2Ωt) 0

0 0 0

⟹ hij = h0

−cos[2Ω(t − r/c)] −sin[2Ω(t − r/c)] 0
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M = 20M⊙; μ = 1/4; r = 40 Mpc; ra = 6 rg

⟹ h0 ≈ 4 × 10−21

Differentiate twice:

Where:

TINY!
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GWs from a BBH system
What about the GW luminosity?

LGW =
G4

5c5
⟨ ···Qij

···Qij⟩ =
G4

5c5

(M1M2)2M
r5

a

M1 = M2 ⟹

LGW =
2
5

c5

G (
rg

ra )
5

HUGE! Why?

• Amplitude reduces with 

distance, this is 
luminosity lost by the 
system.


• Bending spacetime 
takes a lot of energy!
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Binary evolution
GWs take energy out of the system, therefore binary orbit (and eccentricity) 
shrinks!

LGW =
G4

5c5
⟨ ···Qij

···Qij⟩ =
G4

5c5

(M1M2)2M
r5

a

Rate of change of separation:

dra

dt
= −

64G3

5c5

M1M2M
r3

a

Rate of change of orbital period P:

·P ≡
dP
dt

=
dP
dra

dra

dt
=

3
2

2π
(GM)1/2

r1/2
a

dra

dt

Kepler’s law

P2 =
(2π)2r3

a

GM

Eliminate ra using Kepler’s law:

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

Chirp mass

ℳ = ( M3
1M3

2

M )
1/5



Binary evolution
Hulse-Taylor binary: 
• Binary neutron star system, one of the NSs is a pulsar, discovered in 1974.

• Doppler shifts cause small variations in pulse period that can be used to 

accurately measure both NS masses (and orbital period).

• Therefore know exactly how the orbital period should evolve due to GWs.




Binary evolution
• Periastron should come earlier and earlier each orbit compared with if the 

orbital period were constant.

• Can therefore measure the build up of orbital decay over many orbits.


·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3



Binary evolution
• Periastron should come earlier and earlier each orbit compared with if the 

orbital period were constant.

• Can therefore measure the build up of orbital decay over many orbits.


·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3



Binary evolution
• Periastron should come earlier and earlier each orbit compared with if the 

orbital period were constant.

• Can therefore measure the build up of orbital decay over many orbits.




GW waveform
• GW frequency: f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P



GW waveform
• GW frequency:
 f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P

∴ ·f =
96
5

π8/3 ( Gℳ
c3 )

5/3

f11/3



GW waveform
• GW frequency:
 f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P

∴ ·f =
96
5

π8/3 ( Gℳ
c3 )

5/3

f11/3

f(t) = [f −8/3
0 −

256
5

π8/3 ( Gℳ
c3 )

5/3

t]
−3/8

f0 = f(t = 0)



GW waveform
• GW frequency:


• Amplitude:


f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P

∴ ·f =
96
5

π8/3 ( Gℳ
c3 )

5/3

f11/3

f(t) = [f −8/3
0 −

256
5

π8/3 ( Gℳ
c3 )

5/3

t]
−3/8

f0 = f(t = 0)

h0 = 4
GM
c4

μ
(raΩ)2

r



GW waveform
• GW frequency:


• Amplitude:


f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P

∴ ·f =
96
5

π8/3 ( Gℳ
c3 )

5/3

f11/3

f(t) = [f −8/3
0 −

256
5

π8/3 ( Gℳ
c3 )

5/3

t]
−3/8

f0 = f(t = 0)

h0 = 4
GM
c4

μ
(raΩ)2

r
=

4π2/3(Gℳ)5/3

c4r
f 2/3



GW waveform
• GW frequency:


• Amplitude:


• Waveform:

f = 2/P

·P = −
96
5

(2π)8/3( Gℳ
c3 )

5/3

P−5/3

·f =
df
dP

·P

∴ ·f =
96
5

π8/3 ( Gℳ
c3 )

5/3

f11/3

f(t) = [f −8/3
0 −

256
5

π8/3 ( Gℳ
c3 )

5/3

t]
−3/8

f0 = f(t = 0)

h0 = 4
GM
c4

μ
(raΩ)2

r
=

4π2/3(Gℳ)5/3

c4r
f 2/3

h(t) = h0(t) cos φ(t)



GW waveform
• GW frequency:


• Amplitude:


• Waveform:


• Phase:

f = 2/P
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h(t) = h0(t) cos φ(t)

φ(t) = φ0 + ∫
t′ �=t

t′�=0
2πf(t′�)t′ �dt′� = 2π (ft +

1
2

·ft2) + φ0



GW waveform
Numerical Relativityh(t) = h0(t) cos(2πft + π ·ft2)



LIGO/Virgo
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LIGO/Virgo

Different detectors see different signals because:

• Path length difference means GWs arrive at one 

detector slightly after another detector.

• Detectors have different orientations:


Both differences can be used for verification and 
localisation.

(sarm)2 = gμνdxμdxν dxμ = (0,Δxarm, Δyarm, Δzarm)
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Poisson noise 

• Need to accurately measure flux in time interval < 1/f

• No of photons in interval (1/f):

• Poisson counting error:

• Fractional error:
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Poisson noise 

• Need to accurately measure flux in time interval < 1/f

• No of photons in interval (1/f):

• Poisson counting error:

• Fractional error:


Could just crank up the laser power, L?
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Poisson noise 

• Need to accurately measure flux in time interval < 1/f

• No of photons in interval (1/f):

• Poisson counting error:

• Fractional error:


Could just crank up the laser power, L?

…but this increases radiation pressure, which wobbles the mirrors at lower 
frequencies!
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LIGO/Virgo
LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!

Poisson 
noise

Radiation 
pressure

Laser power optimised to be most sensitive to GW f of merging BHs
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LIGO/Virgo
The first GW event

M1 = 36+5
−4 M⊙; M2 = 29+4

−4 M⊙; r = 410+160
−180 Mpc

14th September 2015

Mproduct = 62+4
−4 M⊙ …3 Msun of rest mass energy radiated away!
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LIGO/Virgo Results after observing run 3

• Mainly BBHs, two BNSs and one of them had EM counterpart!

• GW BHs heavier than XRB BHs. Why? Different formation channels 

(LMXRBs will not become GW sources), BBH’s progenitors formed a long 
time ago so lower metallicity.


