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Lecture 9
Gravitational Waves
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Lecture 9
Gravitational Waves
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“Gravitational Wave Radiation by Binary Black Holes” by Ryan Rubenzahl

//rrubenza.github.io/project/p413 gws/RR PHY413 GW Paper.pdf)
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https://rrubenza.github.io/project/p413_gws/RR_PHY413_GW_Paper.pdf

Newtonian Gravitational Waves

e GWs are obviously an inherently relativistic phenomenon.

e BUT we can learn a lot by thinking about the Newtonian gravitational field
we feel from a binary BH system.

 The gravitational field changes ever-so-slightly with binary orbital phase.

e Similarities to GWs: the changes in gravitational potential depend on the
quadrupole moment, and the frequency of the changes is twice the
orbital phase.

* The latter is obvious: we feel the same gravitational force when BH1 is on
the left and BH2 is on the right as we do when BH1 is on the right and
BHZ2 is on the left. M,

€,

Orbital phase:
¢(1) = Q1 M,




Newtonian Gravitational Waves

e Binary system in x-y plane centred on CoM.
* Phase of BH1 is ¢, phase of BH2 is ¢+T.

r; = ry(cos ¢, sin ¢,0) r, = — r,(cos ¢, sin ¢,0)
e Total mass:M = M, + M, ; seperation:7, =71, + 1,




Newtonian Gravitational Waves

e Binary system in x-y plane centred on CoM.
* Phase of BH1 is ¢, phase of BH2 is ¢+T.
r; = ry(cos ¢, sin ¢,0) r, = — 1,(Cos ¢, sin ¢,0)
e Total mass:M = M, + M, ; seperation:r, =1, + 1,
e Observer a distance r from the CoM along vector: 0 = (sini,0, cos i)

 \ector pointing from BH1 to observer: {; = —r{ + ro0
e Vector pointing from BH2 to observer: {, = —r, + r0
Z
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Newtonian Gravitational Waves

e Binary system in x-y plane centred on CoM.
* Phase of BH1 is ¢, phase of BH2 is ¢+T.
r; = ry(cos ¢, sin ¢,0) r, = — 1,(Cos ¢, sin ¢,0)
e Total mass:M = M, + M, ; seperation:r, =1, + 1,
e Observer a distance r from the CoM along vector: 0 = (sini,0, cos i)

 \ector pointing from BH1 to observer: {; = —r{ + ro0
e Vector pointing from BH2 to observer: {, = — 1, + 10
e Gravitational force on observer (mass m) from BH1 in direction of CoM:
1 —
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Newtonian Gravitational Waves

e Binary system in x-y plane centred on CoM.

* Phase of BH1 is ¢, phase of BH2 is ¢+T.

r; = ry(cos ¢, sin ¢,0) r, = — r,(cos ¢, sin ¢,0)

e Total mass:M = M, + M, ; seperation:7, =71, + 1,

e Observer a distance r from the CoM along vector: 0 = (sini,0, cos i)
 \ector pointing from BH1 to observer: {; = —r{ + ro0

* Vector pointing from BH2 to observer: {, = — 1, + 10

e Gravitational force on observer (mass m) from BH1 in direction of CoM:




Newtonian Gravitational Waves

{{=—T1+T70 {y=—Ty+ 710 0 = (sin 7,0, cos i)
r; = ry(cos ¢, sin ¢,0) r, = — r,(cos ¢, sin ¢,0)
e Total gravitational force in direction of CoM:
GMm (r — r;cos ¢ sini) GM,m (r + r, cos ¢ sin i)

2+ r? — 2rircos ¢ sini)¥?  (r? 4+ r3 + 2ryr cos ¢ sin i)3/?




Newtonian Gravitational Waves

{{=—T1+T70 {y=—Ty+ 710 0 = (sin 7,0, cos i)
r; = ry(cos ¢, sin ¢,0) r, = — r,(cos ¢, sin ¢,0)
e Total gravitational force in direction of CoM:
GMm (r — r;cos ¢ sini) GM,m (r + r, cos ¢ sin i)

2+ r? — 2rircos ¢ sini)¥?  (r? 4+ r3 + 2ryr cos ¢ sin i)3/?

* r > r, —> Binomial expansion:




Newtonian Gravitational Waves

{{=—T1+T70 {y=—Ty+ 710 0 = (sin 7,0, cos i)
r; = ry(cos ¢, sin ¢,0) r, = — r,(cos ¢, sin ¢,0)
e Total gravitational force in direction of CoM:
GMm (r — r;cos ¢ sini) GM,m (r + r, cos ¢ sin i)

2+ r? — 2rircos ¢ sini)¥?  (r? 4+ r3 + 2ryr cos ¢ sin i)3/?

* r > r, —> Binomial expansion:

GMlm .. 3 rl - rl .«
F~ (r—ricos¢psmi)|l ——\{— ] +3| — ) cos¢gsini
r

73

GMzm .. i 3 r2 : rz . ._
(r +r,cos ¢ sini) 1—5 — ) =3 | —)cos¢sini
r




Newtonian Gravitational Waves

e Simplify to equal mass binary

GMm
'~

73

- GMm

73

(r — rycos¢sini)

(r+ rycos¢sini)

<1
(m

r

r

r

) COS @ sin i

) COS @ sin i




Newtonian Gravitational Waves

e Simplify to equal mass binary

GMm

F =~
73

- GMm

(r—rycos¢gsini) |1

(r+ rycos¢sini)

ri i
2r—13 6
r a

cos” ¢ sin’ i

r

il

r

r

r

) COS @ sin i

F L
COS @ sin i




Newtonian Gravitational Waves

e Simplify to equal mass binary

GMm o
F = 3 (r—rycos¢gsini) |1
r
GMm .
| 3 (r+ rycos¢sini)
r
GMm _ ri r?
F = 3 2r—13 6
r r r
GMm 3 GMm
F~ r
r2 2

cos” ¢ sin’ i

r

il

r

r

r

1+ sin?i (1 + cos2Q0),

) COS @ sin i

F L
COS @ sin i




Newtonian Gravitational Waves

e Simplify to equal mass binary

GMm o 3 (1 - r o
F~ 3 (r — rycos ¢ sini) 1—5 — ] +3( — )cosgsini
r r r
GM m o 3 (1 - r , ._
F—— (r+ rycos¢sini) 1—5 — ] =3 — ) cos¢gsini
r r r

Monopole Quadrupole
term term



Newtonian Gravitational Waves

e Express in terms of gravitational potential:
GM | GM

|
4 2r3

V(r.1) ~ 2 |14 sin?i (1+ cos2en)



Newtonian Gravitational Waves

e Express in terms of gravitational potential:

GM GM , . .,
Vi)~ ———+——r; 1+ sin?i (1 + cos(en) |

e Can write quadrupole potential in terms of the quadrupole moment tensor:
G él — SiIli

V,(r,H) =— ZQz‘jaiaj_iQS3 0,=0
1 P3| A= 2 03 = COS I
L.J



Newtonian Gravitational Waves

e Express in terms of gravitational potential:

GM GM Yy
V(r, 1) » P 7 |1+ sin?i (14 cosan) |
r 2r3
e Can write quadrupole potential in terms of the quadrupole moment tensor:

0, = SsIni

G 5 Al

V(r,f) = — 0,0, — — 0 =0
q( ) 3 Z sz i 7] N Q33 53 — COS I
L,J

e \Where:
r 1 2 3
i — p(r) rirj_glrl 51']' d’r

e \Which In our case Is:

2 2
=M ~ s )+ M - 25
Qi =M | r 3 i 2\ 72.i"2, 3 U




Newtonian Gravitational Waves

2 2
=M s )+ M ~ 25
Qij = My ih 3 i 2\ 72,72, 3 Y

r; = r{(cos @, sin ¢,0) r, = — 1,(Ccos ¢, sin ¢,0)

* For example:
_ - _ -
r r
1 2
M, | r?cos® p — =
3 22 3

Q1 =M, ”12005245




Newtonian Gravitational Waves

LIPS DY (R 5
3 i 2\ 12,i2,; 3 i

I, = — 1,(cos ¢, sin ¢,0)

Qij =M, (”1,1"’1,]' —

r; = ri(cos ¢, sin ¢,0)

* For example:

ri rs
11 =M, |ricos*¢ 31 F M, |rscos® ¢ — —
¢ Ml =M2 —
0. = 2012 |cos2o 1] Mr;1[1 (2¢)'
= re [cosc g ——| = I cos
! a 3] 2 43 _




Newtonian Gravitational Waves

Qij =M, (”1,1"’1,]' —

r; = ri(cos ¢, sin ¢,0)

* For example:

i
?51] + M2 ]"2,1'7'2,]- —

P2 )
25.
3 Y

I, = — 1,(cos ¢, sin ¢,0)

ri rs
11 =M, |ricos*¢ 31 F M, |rscos® ¢ — —
¢ Ml =M2 —
0. = 2012 |cos2o 1] Mr;1[1 (2¢)'
= re [cosc g ——| = I cos
! a 3] 2 43 _

Mr? |

a

2

Symmetric mass:
MM,
§ =

(M, + M,)?

11—

H

% + cos(2gb)_




Newtonian Gravitational Waves

2 2
0. =M s ) +m _ 25
i — M| 71, 3 i 2\ 12,i2,; 3 i

r; = r{(cos @, sin ¢,0) r, = — 1,(Ccos ¢, sin ¢,0)

* Quadrupole moment tensor for a binary BH system:

i 1/3 + cos(2¢) sIn(2¢)
Q; = Equg sin(2¢)) 1/3 = cos(2¢)
0 0

0
0
—2/3



Newtonian Gravitational Waves

0 = sini

Vq(rat)__{ZQl] O; __Q33} gi:gosz

e Only non-zero terms are Q110101 and Q330303:

G .o D
V(r, 1) = Q) sin’i + Qx5 c08° i — —Q33
373



Newtonian Gravitational Waves

01 — SlIll
V(r,t)—— Z - = 0, =0
1 Qi 0 Q33 03 = COS |

e Only non-zero terms are Q110101 and Q330303:

G 5
Vq(l”, t) = Qll SlIl 1 + Q33 COS“1 — _Q33
373

 For equal mass binary, end up with:

GM Y
V,(r,1) =5 ri {1+ sin®i[1 + cos(2Qn)] }



Newtonian Gravitational Waves

01 = sini
V (r,t) =— - — 0y =0
(>0 = Z Q; 0, Q33 05 = COS i
e Only non-zero terms are Q110101 and Q330303:
G .o D
V(r, 1) = 33 Q,8ini + Qs; cos?i — —Q33
 For equal mass binary, end up with:
GM
V(r,0) = ——r} {1 +sin?i[1 + cos(2Qn]} v

2r3



Newtonian Gravitational Waves

So even in Newtonian gravity we experience a changing gravitational
force from a binary system due to a changing gravitational
quadrupole moment with frequency 2Q.

But of course there are many important differences:

e GWs are ripples in spacetime due to the changing quadrupole
moment, not action-at-a-distance changes in gravitational field.

e Causality: GWs propagate at the speed of light.

e GWs are tiny, but much bigger than the ludicrously tiny effect of a
changing Newtonian gravitational field we’ve explored so far.



GWs from the Einstein Equations

L\

A

Stress-enefgy tensor

Einstein tensor =~

= spacetime curvature = mass density and pressure
= the metric independent of In SR, this is:
coordinate system
(pc2 0 0 0
0 P, 0 0
"w=l0o o P o
|0 0 0 P




GWs from the Einstein Equations

Write metric as Minkowski + small perturbation:

8wy = Ny T hluy h/w < 1



GWs from the Einstein Equations

Write metric as Minkowski + small perturbation:
8w =Myt h/w h/w < 1

After a lot of maths, and the right choice of coordinates (gauge), the Einstein
equations become:

V2 1 & h =—16 GT
T 2o ) T T P A




GWs from the Einstein Equations

Write metric as Minkowski + small perturbation:
8w =Myt h/w h/w < 1

After a lot of maths, and the right choice of coordinates (gauge), the Einstein
equations become:

1 02 G
2 — -
(V ~ 6t2>h’w_ 16nC4TW

In empty space (T=0), we therefore get:

2
Vi = 7o
O 02 or2




GWs from the Einstein Equations

Write metric as Minkowski + small perturbation:
8w =Myt h/w h/w < 1

After a lot of maths, and the right choice of coordinates (gauge), the Einstein
equations become:

V2 1 & h =—16 GT
T 2o ) T T P A

In empty space (T=0), we therefore get:

1 0%h y ...which is a wave equation!
Vzhﬂy =— 5 Ripples in the metric propagate outwards
c= o from a disturbance at the speed of light!




GWs from the Einstein Equations

2
VZhﬂyz L O, Plane wave — , _ 4 Likax®

. e
c2 Ot? solution: HY pv




GWs from the Einstein Equations

0°h
V2 = 1 H Plane wave _ ik x®
,LlU - 2 2 \ h 7, — A Ue a
c+ Ot solution: H H

Set up coordinate system so that wave propagates in z-direction:

— (kz—
h,m/ — Aﬂyez( 7—wt)



GWs from the Einstein Equations

0°h
V2 = 1 H Plane wave _ ik x®
uv . h y = A L
c2 Ot? solution: H H

Set up coordinate system so that wave propagates in z-direction:

— (kz—
B, = A, 0D

Amplitude is linear sum of two modes:

0000 0000 (Cartesian
1an,
A,=h, 0100 +h, 00 10 0=t, 1=x,
# 0O 0 —1 O O 1 0O 5y 3
—y,S—Z)
. 0 ,, 0 V, 0

Plus mode Cross mode



GW solutions

What do the waves actually look like?



GW solutions

What do the waves actually look like?

dy//i — (OaOaL()aO)

e S x
dx* = (0,L,,0,0)




GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [”I;w + hﬂy] dx'dx”

Ve ._> X
xt = (0, LO,O 0)



GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [77/41/ + hﬂy] dx'dx”
e Let’s say the GW is only the plus mode:

0-0 00 (52 = [, + by ldx'dx = L2 |1 + by

hﬂyoccos(a)t) 0 (1) _01 8
0 0 0
Va
S
,qo A‘
S
=
1
3.
< '@ &—

dx* = (0,L,,0,0)



GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [77/41/ + hﬂy] dx'dx”
e Let’s say the GW is only the plus mode:

0-0 00 (52 = [, + by ldx'dx = L2 |1 + by

h o cos(wt) o 1/2
H 00 -1 0 se=Lo |1 +hy| "= Ly [1+hy /2]
0O O 0
Va
S
,qo A‘
S
S
1
3~>\. v
Sle—e—,

dx* = (0,L,,0,0)



GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [77/41/ + hﬂy] dx'dx”
e Let’s say the GW is only the plus mode:

0-0 00 (52 = [, + by ldx'dx = L2 |1 + by

h o cos(wt) 010 0 1
pu 00 -10 se=Lo |1+ hy| "~ Ly |1+ hyy /2]
00 0 O
* Fractional length change in x-direction: Y4
AL s.—Ly  hyy (o) S
— | = X — X COS(w S
L) L 2 3 4 @
)
|
S,
< ve ,—» ¥

dx* = (0,L,,0,0)



GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [77/41/ + hﬂy] dx'dx”
e Let’s say the GW is only the plus mode:

0-0 00 (52 = [, + by ldx'dx = L2 |1 + by

h, o cos(wt) 010 0 1
v 00 -1 0 se=Lo |1+ hy| " = Ly |1+ by /2]
0O 0 0 O
* Fractional length change in x-direction: Y4
— | = N — X COS(w S
L LO 9) ,qh N
e Fractional length change in y-direction: g
AL s — L h ~
(_> =2 D2 cos(wt) |
L N Ly 2 0 !
i < .—> X
M =

= (0, LO,O 0)



GW solutions

What do the waves actually look like?
* Proper length of dxv is root of the 4D spacetime interval:

(s.)* = g, dx"dx" = [77/41/ + hﬂy] dx'dx”
e Let’s say the GW is only the plus mode:

0-0 00 (52 = [, + by ldx'dx = L2 |1 + by

hﬂy x cos(wt) 0100 1/2
00 -1 0 se=Lo |1 +hy| "= Ly [1+hy /2]
0O 0 0 O
* Fractional length change in x-direction: Y4
— — ~ — X COS\w -
L L() 9) th A‘
e Fractional length change in y-direction: g
AL S,—Ly h ~
(T) =7 0 % x — cos(wt) I
3
y 0 S e . .
* X and y oscillations are out of phase x#* = (0, LO,() 0)



GW solutions

AL
(T) x cos(wt)

X

(7) 2

Y

Or place test masses in a circle in the x-y plane:

A . Vs I 2‘\
/ AN
4 x
i K
\ /

~,
~

.

T

+

.

+X

o 7
AN




GW solutions

We now want to know the amplitude of the GWs by solving the Einstein
equations in the vicinity of the source (T>0 at the source):

V2 1 & h =—16 GT
T 2o ) T T P A

After a lot of maths, en ith G r oberr disance r from source:

2 G .. :
hij(ra t) - _4 Ql](t — }"/C) ,

r c¢
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We now want to know the amplitude of the GWs by solving the Einstein
equations in the vicinity of the source (T>0 at the source):

V2 1 & h =—16 GT
T 2o ) T T P A

After a lot of maths, en ith G r oberr disance r from source:

2 G .. :

r c¢

Roman letters =>

runs from 1-3 Propagates at

speed of light

2nd time derivative of
quadrupole moment



GW solutions

We now want to know the amplitude of the GWs by solving the Einstein
equations in the vicinity of the source (T>0 at the source):

V2 1 & h =—16 GT
T e T T T

After a lot of maths, en ith G r obrr disance r from source:

2 G .. :

r c¢

Roman letters =>

runs from 1-3 Propagates at

ond time derivative of ~ SP€ed of light

quadrupole moment

Why 1/r?
Direct analogy to EM waves: energy carried in the wave is proportional to the

amplitude squared (i.e. Poynting flux). Energy conservation => transmitted
energy proportional to 1/r2.



GW solutions

We now want to know the amplitude of the GWs by solving the Einstein
equations in the vicinity of the source (T>0 at the source):

V2 1 & h =—16 GT
T e T T T

After a lot of maths, en ith G r oberr disance r from source:

GWSs carry energy away from the source. Energy carried away from source per
unit time (GW luminosity) is:

Averaging is over characteristic timescale
(one orbital period for GWs from a BBH)



GWs from a BBH system

h(r t)———Q(t—r/c)

r ¢t



GWs from a BBH system

hl](r 1)y =— — Ql](t —r/c)
r ¢t
What is the amplitude of GWs from a BBH system? Recall:
(1/3 + cos(2¢)  sin(2¢) 0 )

1
Q,-]-=5/4Mr§ sin(2¢) 1/3 —cos(2¢) O

\ 0 0 ~2/3,




GWs from a BBH system

hl](r ) = 7 c_ Ql](t —r/c)
What is the amplitude of GWs from a BBH system? Recall:
| (1/3 + cos(2¢)  sin(2¢) 0 )
Q= Equg sin(2¢) 1/3 = cos(2¢p) 0O
\ 0 0 ~2/3)

Differentiate twice:
(—cos(2Qf) —sin(2Q1) 0)

0, = 2uMr2Q* | —sin(2Qr) cos(2Qr) 0
\ 0 0 0)




GWs from a BBH system

hl](r ) = 7 c_ Ql](t —r/c)
What is the amplitude of GWs from a BBH system? Recall:
| (1/3 + cos(2¢)  sin(2¢) 0 )
Q= Equg sin(2¢) 1/3 = cos(2¢p) 0O
\ 0 0 ~2/3)

Differentiate twice:
(—cos(2Qf) —sin(2Q1) 0)

0, = 2uMr2Q* | —sin(2Qr) cos(2Qr) 0
\ 0 0 0)

(—cos[2Q(r — r/c)] —sin[2Q(t — r/c)] 0)
= ;= hy| —sin[2Q(t — r/c)] cos[2Q(t —r/c)] O
\ 0 0 0)

Where:

GM (r,Q)°

hy = 4
0 C4M -




GWs from a BBH system

hl](r ) = 7 c_ Ql](t —r/c)
What is the amplitude of GWs from a BBH system? Recall:
| (1/3 + cos(2¢)  sin(2¢) 0 )
Q= Equg sin(2¢) 1/3 = cos(2¢p) 0O
\ 0 0 ~2/3)

Differentiate twice:
(—cos(2Qf) —sin(2Q1) 0)

0, = 2uMr2Q* | —sin(2Qr) cos(2Qr) 0
\ 0 0 0)

(—cos[2Q(r — r/c)] —sin[2Q(t — r/c)] 0)
= ;= hy| —sin[2Q(t — r/c)] cos[2Q(t —r/c)] O
\ 0 0 0)

Where:

GM (r,Q)° _ GM u Ty

hy = 4
0 c4'u 4 ct rr
a




GWs from a BBH system

hl](r ) = 7 c_ Ql](t —r/c)
What is the amplitude of GWs from a BBH system? Recall:
| (1/3 + cos(2¢)  sin(2¢) 0 )
Q= Equg sin(2¢) 1/3 = cos(2¢p) 0O
\ 0 0 ~2/3)

Differentiate twice:
(—cos(2Qf) —sin(2Q1) 0)

0, = 2uMr2Q* | —sin(2Qr) cos(2Qr) 0
\ 0 0 0)

(—cos[2Q(t — r/c)] —sin[2Q(t — r/c)] O)
= ;= hy| —sin[2Q(t — r/c)] cos[2Q(t —r/c)] O

\ 0 0 0,
Where:
GM (r, Q) GMur’
hy = 4 (I GM T
c* r ct rr,

M =20My; p=1/4; r =40 Mpc; ra=6rg



GWs from a BBH system

hl](r ) = 7 c_ Ql](t —r/c)
What is the amplitude of GWs from a BBH system? Recall:
| (1/3 + cos(2¢)  sin(2¢) 0 )
Q= Equg sin(2¢) 1/3 = cos(2¢p) 0O
\ 0 0 ~2/3)

Differentiate twice:
(—cos(2Qf) —sin(2Q1) 0)

Q;; = 2uMriQ* | —sin(2Qr)  cos(2Qr) 0
L0 0 0,

(—cos[2Q(t — r/c)] —sin[2Q(t — r/c)] O)
= ;= hy| —sin[2Q(t — r/c)] cos[2Q(t —r/c)] O

\ 0 0 0,
Where:
GM (r, Q) GMur’
hy = 4 (I GM T
c* r ct rr,

M =20My; p=1/4; r =40 Mpc; ra=6rg



GWs from a BBH system

What about the GW Iuminosi’cy’7

........ G* (M, M,)*M
LGW:_<Q Q”)— M)

5
5¢ r



GWs from a BBH system

What about the GW luminosity?

G* .. ... G* (M\M,)*M
Low = —5(0;0" = —5——
C 5c r

a




GWs from a BBH system

What about the GW luminosity?

G* ... . G* (MM,)*M
L = — OYY =
GW 5C5<QUQ > 505 7"651
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GWs from a BBH system

What about the GW Iuminosity?
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HUGE! Why? E
 Amplitude reduces with &

distance, this is
luminosity lost by the
system.

 Bending spacetime
takes a lot of energy!
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Binary evolution

GW:s take energy out of the system, therefore binary orbit (and eccentricity)

inks!
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OW 55 50 1T 505 r

a




Binary evolution
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GW:s take energy out of the system, therefore binary orbit (and eccentricity)
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Binary evolution

GW:s take energy out of the system, therefore binary orbit (and eccentricity)

shrinks!
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Binary evolution

GW:s take energy out of the system, therefore binary orbit (and eccentricity)

shrinks!
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Binary evolution

GW:s take energy out of the system, therefore binary orbit (and eccentricity)

shrinks!
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Rate of change of separation:
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Binary evolution

GW:s take energy out of the system, therefore binary orbit (and eccentricity)

shrinks!

G* .. .. G* (M,M,)*M
Low = —5(0;0" = —5——

5¢

5¢3 r
Rate of change of separation:
dr, B 64G> M\M,M
B 5 3
i ¢ a Kepler’s law
Rate of change of orbital period P: (zﬂ)2r3
P = -
Pzd—P _ dP dr, _ 3 2 rmdra GM
dt dr, dt 2 (GM)\2 " dr
Eliminate ra using Kepler’s law: Chirp mass
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Binary evolution

Hulse-Taylor binary:

* Binary neutron star system, one of the NSs is a pulsar, discovered in 1974.
* Doppler shifts cause small variations in pulse period that can be used to
accurately measure both NS masses (and orbital period).

* Therefore know exactly how the orbital period should evolve due to GWSs.




Binary evolution

* Periastron should come earlier and earlier each orbit compared with if the

orbital period were constant.
* Can therefore measure the build up of orbital decay over many orbits.
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Binary evolution

* Periastron should come earlier and earlier each orbit compared with if the

orbital period were constant.

* Can therefore measure the build up of orbital decay over many orbits.
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Binary evolution

* Periastron should come earlier and earlier each orbit compared with if the
orbital period were constant.
* Can therefore measure the build up of orbital decay over many orbits.
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GW waveform
e GW frequency: f = 2/P
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GW waveform

e GW frequency: f=2/P f= d_PP
5/3
P — %(2]{)8/3 Gﬂ) P—5/3
5 ¢
5/3
_ 96 o5 (GH 11/3
/= 5" ( c3 ) /
- 53 7 —3/8
fio = |93 256 L83 GM ) /
5 ¢
2
.+ Amplitude: = 42, Ut

Jo=f(t=0)



GW waveform

e GW frequency: f=2/P f= d_PP
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GW waveform
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GW waveform

e GW frequency: f=2/P f= j—{)P
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GW waveform
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Figure 5.3: (Left) Plot of the binary black hole waveform as a function of time, as well as the black hole separation
and relative velocity, all as calculated from our slow-motion approximation to the linearized theory of general
relativity. (Right) Computer simulations solving Einstein’s equations numerically for the waveform of coalescing
binary black holes [9]. Note the strength of the velocities, especially right before the merger takes place (as well
as the shape of the waveform) - here it becomes clear that our approximation is beginning to break down.
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Different detectors see different signals because:

e Path length difference means GWs arrive at one
detector slightly after another detector.

e Detectors have different orientations:

(Sarm)2 — gﬂydx’udxy dx,u — (O’Axarm’ Ayarrm Azarm)

Both differences can be used for verification and
localisation.




LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!
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LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!
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LIGO/Vlrgo

Poisson noise

Flux

Time

e Need to accurately measure flux in time interval < 1/f
* No of photons in interval (1/f): N = L(1/f)/(hv)

e Poisson counting error: dN = \/N

e Fractional error: dN/N = N~1/2 « f1/2

Could just crank up the laser power, L?

...but this increases radiation pressure, which wobbles the mirrors at lower
frequencies!



LIGO/Virgo

LIGO sensitivity is amazing, and needs to be to detect such a tiny signal!
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The first GW event
Hanford, Washington (H1) Livingston, Louisiana (L1)
| 1 | | | I |

1.0} ﬂ -

05} ]

0.0

0.5 | u -
=5 -1.0 F - H — L1 cbserved t 7]
i ~— H1 cbserved H1 observed (shifted, irverted)
o I | | | T I |
b T T T T T T 1
— 1.0
=
© 0.5F ﬁ 1t —
2 B0 MWV\/\\ J\/\/&.ﬁ o W

0.5 il | |

-1.0 H — Numerical relativity v - H — Numerica relativity il

Reconstructad (wavelet) Recorstructed (wavelet)
B Reconstructad (template) mm Recorstructed (template)
I 1 | | I I 1

14th September 2015
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Mproduct — 62J_r4 M ...3 Msun of rest mass energy radiated away!
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LlGO/VII‘gO Results after observing run 3

Masses in the Stellar Graveyard

in Solar Masses

I\

EM Neutron Stars

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky., Aaron Geller | Northwastem

 Mainly BBHs, two BNSs and one of them had EM counterpart!

e GW BHs heavier than XRB BHs. Why? Different formation channels
(LMXRBs will not become GW sources), BBH’s progenitors formed a long
time ago so lower metallicity.




